Problem set 1

- **1.** Which of the following sets form a vector space over \mathbb{R} ? Give a basis of the vector spaces.
 - a) 3×3 real upper triangular matrices with the usual operations;
 - b) invertible 2×2 real matrices;
 - c) polynomials of degree at most 4 which have -1 as one of their roots;
 - d) real pairs with addition $(a, b) \oplus (c, d) = (a + d, b + c)$ and multiplication by scalars $\lambda \cdot (a, b) = (\lambda a, \lambda b)$.

2. Determine the matrices of the following linear maps with respect to the given basis or pair of bases:

- a) rotation of the 3 dimensional space about the z axis by 90° , in the standard basis;
- b) $p(x) \mapsto (xp(x))'$ in the space of real polynomials of degree at most 2, in the standard basis $\{1, x, x^2\};$
- c) $\mathbf{x} \mapsto A\mathbf{x}$, where $A = \begin{bmatrix} 1 & -1 \\ 4 & -3 \end{bmatrix}$, $\mathcal{B} = \{(1,2), (1,1)\};$
- d) $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$, where $\varphi(1,2,1) = (0,2,1), \ \varphi(1,1,1) = (1,0,0), \ \varphi(1,0,0) = (-1,0,0)$, in the standard basis;
- e) $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$, $\varphi(x,y) = (x+y,y,x)$, in the pair of bases $\mathcal{B}_1 = \{(1,1), (2,0)\}, \mathcal{B}_2 = \{(1,2,1), (-1,1,0), (0,1,1)\};$
- f) orthogonal projection onto the plane x 2y + z = 0, in the standard basis;
- g) transposition of 2×2 real matrices, in the standard basis.

3. Find a linear transformation $f : \mathbb{R}^3 \to \mathbb{R}^3$ such that

- a) $0 \neq \operatorname{Ker} f \subseteq \operatorname{Im} f;$
- b) Ker f is 1 dimensional, and Ker $f \cap \text{Im } f = \{ \mathbf{0} \};$
- c) $\operatorname{Im} f$ is 2 dimesional, and f maps each vector of $\operatorname{Im} f$ into itself;
- d) $f^3 = 0$ but $f^2 \neq 0$ (where the product means composition).
- **4.** Let A be the standard matrix of $f: (x, y, z) \mapsto (x + y 2z, x + z, 2x + y z, -x z)$. Give bases for the null space of A (i.e. the kernel of f) and for the columns space of A (i.e. the image of f).
- 5. Prove that
 - a) rank $(AB) \leq \min \{ \operatorname{rank} A, \operatorname{rank} B \}$, where $A \in K^{k \times m}$ és $B \in K^{m \times n}$;
 - b) $|\operatorname{rank} A \operatorname{rank} B| \le \operatorname{rank}(A + B) \le \operatorname{rank} A + \operatorname{rank} B$, where $A, B \in K^{m \times n}$.

(*Hint: Prove that, considering the matrices as linear maps in the natural way,* $\operatorname{Im} AB \leq \operatorname{Im} A$, $\operatorname{Ker} AB \geq \operatorname{Ker} B$ and $\operatorname{Im}(A + B) \leq \operatorname{span}(\operatorname{Im} A, \operatorname{Im} B)$.)

- **6.** Show that for any matrix $A \in K^{m \times n}$ and any invertible matrices $B \in K^{m \times m}$ and $C \in K^{n \times n}$, we have rank $BA = \operatorname{rank} AC = \operatorname{rank} A$.
- 7. Show that for every matrix $A \in K^{m \times n}$ of rank r there exist invertible matrices $P \in K^{n \times n}$ and $Q \in K^{m \times m}$ such that in the matrix $B = Q^{-1}AP$ the elements b_{11}, \ldots, b_{rr} are 1, and all the other elements are 0, i.e. as a block matrix $B = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$.
- 8. Let f be a linear transformation of a 6 dimensional vector space. Which of the following sequences may give the ranks of f, f^2, f^3, f^4 ?

a)
$$3, 4, 2, 2$$
 b) $6, 5, 4, 3$ c) $5, 4, 4, 4$ d) $5, 3, 2, 1$ e) $3, 2, 1, 0$

- 9. Show that every 3×3 real matrix has an eigenvector.
- 10. Prove that every eigenvector of A is an eigenvector of A^2 . Is the reverse statement true?
- 11. Which are those $n \times n$ real matrices for which every nonzero element of \mathbb{R}^n is an eigenvector?
- 12. Determine the eigenvalues and eigenvectors of the linear transformations in problem 2.
- **13.** For which intergers c is there an integral polynomial f(x) with f(1) = 0, f(2) = 2 és f(0) = c?