1. Which of the following sets form a vector space over \mathbb{R} ? Give a basis of the vector spaces.
a) 3×3 real upper triangular matrices with the usual operations;
b) invertible 2×2 real matrices;
c) polynomials of degree at most 4 which have -1 as one of their roots;
d) real pairs with addition $(a, b) \oplus(c, d)=(a+d, b+c)$ and multiplication by scalars $\lambda \cdot(a, b)=$ ($\lambda a, \lambda b$).
2. Determine the matrices of the following linear maps with respect to the given basis or pair of bases:
a) rotation of the 3 dimensional space about the z axis by 90°, in the standard basis;
b) $p(x) \mapsto(x p(x))^{\prime}$ in the space of real polynomials of degree at most 2 , in the standard basis $\left\{1, x, x^{2}\right\}$;
c) $\mathbf{x} \mapsto A \mathbf{x}$, where $A=\left[\begin{array}{ll}1 & -1 \\ 4 & -3\end{array}\right], \mathcal{B}=\{(1,2),(1,1)\}$;
d) $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, where $\varphi(1,2,1)=(0,2,1), \varphi(1,1,1)=(1,0,0), \varphi(1,0,0)=(-1,0,0)$, in the standard basis;
e) $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, \varphi(x, y)=(x+y, y, x)$, in the pair of bases $\mathcal{B}_{1}=\{(1,1),(2,0)\}, \mathcal{B}_{2}=$ $\{(1,2,1),(-1,1,0),(0,1,1)\} ;$
f) orthogonal projection onto the plane $x-2 y+z=0$, in the standard basis;
g) transposition of 2×2 real matrices, in the standard basis.
3. Find a linear transformation $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that
a) $0 \neq \operatorname{Ker} f \subseteq \operatorname{Im} f$;
b) $\operatorname{Ker} f$ is 1 dimensional, and $\operatorname{Ker} f \cap \operatorname{Im} f=\{\mathbf{0}\}$;
c) $\operatorname{Im} f$ is 2 dimesional, and f maps each vector of $\operatorname{Im} f$ into itself;
d) $f^{3}=0$ but $f^{2} \neq 0$ (where the product means composition).
4. Let A be the standard matrix of $f:(x, y, z) \longmapsto(x+y-2 z, x+z, 2 x+y-z,-x-z)$. Give bases for the null space of A (i.e. the kernel of f) and for the columns space of A (i.e. the image of f).
5. Prove that
a) $\operatorname{rank}(A B) \leq \min \{\operatorname{rank} A, \operatorname{rank} B\}$, where $A \in K^{k \times m}$ és $B \in K^{m \times n}$;
b) $|\operatorname{rank} A-\operatorname{rank} B| \leq \operatorname{rank}(A+B) \leq \operatorname{rank} A+\operatorname{rank} B$, where $A, B \in K^{m \times n}$.
(Hint: Prove that, considering the matrices as linear maps in the natural way, $\operatorname{Im} A B \leq \operatorname{Im} A$, Ker $A B \geq \operatorname{Ker} B$ and $\operatorname{Im}(A+B) \leq \operatorname{span}(\operatorname{Im} A, \operatorname{Im} B)$.)
6. Show that for any matrix $A \in K^{m \times n}$ and any invertible matrices $B \in K^{m \times m}$ and $C \in K^{n \times n}$, we have $\operatorname{rank} B A=\operatorname{rank} A C=\operatorname{rank} A$.
7. Show that for every matrix $A \in K^{m \times n}$ of rank r there exist invertible matrices $P \in K^{n \times n}$ and $Q \in K^{m \times m}$ such that in the matrix $B=Q^{-1} A P$ the elements $b_{11}, \ldots, b_{r r}$ are 1 , and all the other elements are 0 , i.e. as a block matrix $B=\left[\begin{array}{cc}I_{r} & 0 \\ 0 & 0\end{array}\right]$.
8. Let f be a linear transformation of a 6 dimensional vector space. Which of the following sequences may give the ranks of f, f^{2}, f^{3}, f^{4} ?
a) $3,4,2,2$
b) $6,5,4,3$
c) $5,4,4,4$
d) $5,3,2,1$
e) $3,2,1,0$
9. Show that every 3×3 real matrix has an eigenvector.
10. Prove that every eigenvector of A is an eigenvector of A^{2}. Is the reverse statement true?
11. Which are those $n \times n$ real matrices for which every nonzero element of \mathbb{R}^{n} is an eigenvector?
12. Determine the eigenvalues and eigenvectors of the linear transformations in problem 2.
13. For which intergers c is there an integral polynomial $f(x)$ with $f(1)=0, f(2)=2$ és $f(0)=c$?
