- 1. Is there a 3×3 matrix over \mathbb{Q} with minimal polynomial
 - a) $x^2 2;$ b) $x^2 + x?$
- **2.** Suppose that A is a matrix over \mathbb{C} such that $A^m = I$ for some $m \geq 1$. Prove that A is diagonalizable.
- **3.** Which of the following matrices are diagonalizable over C? Determine the Jordan normal form of the matrices.

	Гэ	1	21	Γο ο	₀٦	Γ1	1	1	1 -]	Γ 0	0	0	ך 0
A =	-3	1			$\begin{vmatrix} -2\\ 3\\ 0 \end{vmatrix}$	$\alpha = 0$	2	1	0		-1	0	0	2
		1	0	$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$		$C = \begin{bmatrix} 0 \end{bmatrix}$	0	3	$3 \ 1$	D =	0	0	0	-1
		0	-1]		0]	Lo	0	0	4			0	0	0

4. What is the maximal number of non-similar complex matrices satisfying the following conditions? Give the Jordan normal form in each possible case.

a)
$$k(x) = -x^5(x+1)^2$$
, $m(x) = x^3(x+1)$;

- b) $k(x) = (x 1)^4 x$, and the eigenspace for the eigenvalue 1 is 2-dimensional.
- 5. Find two non-similar 7×7 matrices which have the same minimal and characteristic polynomials, and their eigenspaces also have the same dimension.
- 6. Calculate the *n*th power of the following matrices, using the diagonal or Jordan normal form.

$$A = \begin{bmatrix} 5 & -6\\ 3 & -4 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} 4 & -4\\ 1 & 0 \end{bmatrix}$$

- 7. Prove that every $n \times n$ complex matrix is similar to its transposed matrix. (Use the Jordan normal form.)
- 8. Is there a matrix $I \neq A \in \mathbb{Q}^{n \times n}$ such that a) $A^3 = I$; b) $A^5 = I$? And in $\mathbb{Q}^{2 \times 2}$?