1. Write the vector \mathbf{b} as the sum of a vector which is orthogonal to \mathbf{a} and a vector which is parallel to a if
a) $\mathbf{a}=(1,-2,0,1), \quad \mathbf{b}=(3,1,1,1)$;
b) $\mathbf{a}=(1+i, 1-i), \quad \mathbf{b}=(i, 3-i)$.
2. Suppose $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k} \in \mathbb{R}^{n}$ are orthogonal vectors and neither of them is $\mathbf{0}$. Let $W=$ $\operatorname{span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$, and for a vector $\mathbf{v} \in \mathbb{R}^{n}$ define $\mathbf{v}^{\prime}=\sum_{i=1}^{k} \frac{\mathbf{b}_{i}^{T} \mathbf{v}}{\left|\mathbf{b}_{i}\right|^{2}} \mathbf{b}_{i}$. Prove that
a) $\mathbf{v}-\mathbf{v}^{\prime} \perp \mathbf{w}$ for every $\mathbf{w} \in W$;
b) if $\mathbf{v} \notin W$, then $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}, \mathbf{v}-\mathbf{v}^{\prime}\right\}$ is an orthogonal basis of $\operatorname{span}(W \cup\{\mathbf{v}\})$;
c) \mathbf{v}^{\prime} is the element of W closest to \mathbf{v} (that is, $\left|\mathbf{v}-\mathbf{v}^{\prime}\right|=\min \{|\mathbf{v}-\mathbf{w}| \mid \mathbf{w} \in W\}$).
3. Use problem 2.b) to find and orthogonal and then an orthonormal basis in the subspace of \mathbb{R}^{4} spanned by $(1,2,-1,0),(2,1,0,1)$ and $(1,-1,1,-1)$.
4. Prove that the subset $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mid x_{1}+x_{2}=x_{4}+x_{5}\right\}$ is a hyperplane in \mathbb{R}^{5}, and determine its normal vector. Calculate the reflection of $(1,0,0,0,0)$ to this hyperplane.
5. Give the standard matrix of the orthogonal projection and of the reflection on the hyperplane $x+y-z=0$ in \mathbb{R}^{3}.
6. Find the standard matrix of a reflection which maps the vector $(1,2,-2)$ to $(3,0,0)$. (Hint: It is the reflection on the bisector plane of the line segment connecting the endpoints of the two vectors.)
7. Which of the following matrices are self-adjoint, unitary or normal? Which of the self-adjoint matrices are positive semidefinite or positive definite?
$A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$
$B=\left[\begin{array}{rrr}0 & 2 & -1 \\ -2 & 0 & 3 \\ 1 & -3 & 0\end{array}\right]$
$C=\left[\begin{array}{rr}i & i \\ i & -i\end{array}\right]$
$D=\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right]$
$E=\left[\begin{array}{rr}1 & -1 \\ -1 & 3\end{array}\right]$
$F=\left[\begin{array}{cc}-1 & 2+i \\ 2-i & -5\end{array}\right] \quad G=\left[\begin{array}{rrr}1 / 3 & -2 / 3 & -2 / 3 \\ 2 / 3 & 2 / 3 & -1 / 3 \\ 2 / 3 & -1 / 3 & 2 / 3\end{array}\right]$
$H=\left[\begin{array}{cc}1 & i \\ 1+i & 0\end{array}\right]$
8. Give an example of a transformation $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that the absolute value of every eigenvalue is 1 but the transformation is not unitary.
9. Give the reduced (and the full) singular value decomposition of the following matrices.

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \quad B=\left[\begin{array}{ll}
4 & -3
\end{array}\right] \quad C=\left[\begin{array}{ll}
i & 0 \\
0 & 1 \\
0 & i
\end{array}\right] \quad D=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -2 \\
0 & 2 & -4
\end{array}\right] \quad E=\left[\begin{array}{rr}
2 & -11 \\
10 & -5
\end{array}\right]
$$

10. Use the reduced SVD form of the matrices of problem 9 to
a) find the pseudoinverse of A, and with that the best approximate solution of the inconsistent equation $A \mathbf{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
b) find the matrix of rank 1 closest to the matrix D.
