
Applied algebra Problem set 1 2017, Fall semester

1. Which of the following sets form a vector space over R? Give a basis of the vector spaces.

a) 3× 3 real upper triangular matrices with the usual operations;
b) invertible 2× 2 real matrices;
c) polynomials of degree at most 4 which have −1 as one of their roots;
d) real pairs with addition (a, b) ⊕ (c, d) = (a + d, b + c) and multiplication by scalars λ · (a, b) =

(λa, λb).

Solution: a) It is a vector space because it is a subspace of R3×3: the sum or scalar multiple of
upper triangular matrices is upper triangular. A basis is {Eij | i ≤ j }, where Eij is the matrix
where the j’th element of the ith row is 1, and the others are 0.

b) Not a vector space. Though it is a subset of the vector space R2×2, it is not a subspace: 0
times an invertible matrix is the zero matrix, which is not invertible. But even if we add the 0

matrix to the subset we do not get a subspace:

[

1 0
0 1

]

+

[

0 1
1 0

]

=

[

1 1
1 1

]

is not invertible.

c) It is a vector space because it is a subspace of R[x] (the sum and scalar multiples of polynomials
with root −1 also have −1 as a root and the degree does not increase). A basis is:
{x+ 1, (x+ 1)x, (x+ 1)x2, (x+ 1)x3 }.

d) Not a vector space: (a, b) ⊕ (c, d) = (a + d, b + c), but (c, d) ⊕ (a, b) = (c + b, a + d), so the
operation ⊕ is not commutative.

2. Determine the matrices of the following linear maps with respect to the given basis or pair of bases:
a) rotation of the 3 dimensional space about the z axis by 90◦, in the standard basis;
b) p(x) 7→ (xp(x))′ in the space of real polynomials of degree at most 2, in the standard basis

{ 1, x, x2 };

c) x 7→ Ax, where A =

[

1 −1
4 −3

]

, B = {(1, 2), (1, 1) };

d) ϕ : R3 → R3, where ϕ(1, 2, 1) = (0, 2, 1), ϕ(1, 1, 1) = (1, 0, 0), ϕ(1, 0, 0) = (−1, 0, 0), in the
standard basis;

e) ϕ : R
2 → R

3, ϕ(x, y) = (x + y, y, x), in the pair of bases B1 = {(1, 1), (2, 0) }, B2 =
{(1, 2, 1), (−1, 1, 0), (0, 1, 1) };

f) orthogonal projection onto the plane x− 2y + z = 0, in the standard basis;
g) transposition of 2× 2 real matrices, in the standard basis.

Solution: a)





0 −1 0
1 0 0
0 0 1



 b)





1 0 0
0 2 0
0 0 3



 c)

[

1 1
2 1

]

−1 [

1 −1
4 −3

] [

1 1
2 1

]

=

[

−1 1
0 −1

]

d) A ·





1 1 1
2 1 0
1 1 0



 =





0 1 −1
2 0 0
1 0 0



 ⇒ A =





0 1 −1
2 0 0
1 0 0



 ·





1 1 1
2 1 0
1 1 0





−1

=





−1 −1 3
0 2 −2
0 1 −1





e)





1 −1 0
2 1 1
1 0 1





−1 



1 1
0 1
1 0





[

1 2
1 0

]

=





1 0
−1 −2
0 2





f) The projection of the vector (x, y, z) onto the normal vector (1,−2, 1) of the plane is
(x, y, z)(1,−2, 1)

|(1,−2, 1)|2
(1,−2, 1) =

1

6
· (x− 2y+ z, −2x+4y− 2z, x− 2y+ z), so its projection onto

the plane is
(x, y, z)− 1

6
(x−2y+z, −2x+4y−2z, x−2y+z) = (1

6
(5x+2y−z, 2x+2y+2z, −x+2y+5z),

and the standard matrix of the projection is 1

6





5 2 −1
2 2 2

−1 2 5



.

g) The action on the elements of the standard basis {E11, E12, E21, E22 } is E11 7→ E11, E12 7→

E21, E21 7→ E12, E22 7→ E22, so the standard matrix is







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






.
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3. Find a linear transformation f : R3 → R3 such that
a) 0 6= Ker f ⊆ Im f ;
b) Ker f is 1 dimensional, and Ker f ∩ Im f = {0 };
c) Im f is 2 dimesional, and f maps each vector of Im f into itself;
d) f3 = 0 but f2 6= 0 (where the product means composition).

Solution: It suffices the give the action of the transformations on the elements of a basis B =
{b1, b2, b3 } of R3.
a) By the dimension theorem, dimKer f + dim Im f = 3, and 1 ≤ dimKer f ≤ dim Im f , so

dimKer f = 1, and dim Im f = 2. This can be achieved by a linear map acting on the basis
elements as follows: b1 7→ 0, b2 7→ b1, b3 7→ b3

b) Let b1 7→ 0, b2 7→ b2 and b3 7→ b3. Since the image is a 2-dimensional subspace span(b2,b3),
the dimension of the kernel can only be 1, and the kernel contains b1, so it is the subspace
span(b1).

c) The map given in the solution of b) satisfies this condition as well.
d) b1 7→ b2 7→ b3 7→ 0

4. Let A be the standard matrix of f : (x, y, z) 7−→ (x+ y − 2z, x+ z, 2x+ y − z,−x− z). Give bases
for the null space of A (i.e. the kernel of f) and for the columns space of A (i.e. the image of f).

Solution: The matrix and its reduced row echelon form are

A =







1 1 −2
1 0 1
2 1 −1

−1 0 −1






7→ 7→ 7→ rref(A) =







1 0 1
0 1 −3
0 0 0
0 0 0







Thus the null space, i.e. the solution space of the homogeneous system of equations consists of

the matrices t ·





−1
3
1



 (t ∈ R), so its basis is { [−1 3 1 ]
T
}. The basis of the column space

consists of the columns of A which stand in the same positions as the columns of rref(A) containing

a leading 1, i.e. { [ 1 1 2 −1 ]T , [ 1 0 1 0 ]T }. We could also find a basis of the row space
of A easily: the nonzero rows of rref(A), i.e. { [ 1 0 1 ] , [ 0 1 −3 ] } give such a basis, since
they are clearly linearly independent, and the elementary row operations do not change the row
space.

5. Prove that
a) rank(AB) ≤ min { rankA, rankB }, where A ∈ Kk×m és B ∈ Km×n;
b) | rankA− rankB| ≤ rank(A+B) ≤ rankA+ rankB, where A,B ∈ Km×n.

(Hint: Prove that, considering the matrices as linear maps in the natural way, ImAB ≤ ImA,
KerAB ≥ KerB and Im(A+B) ≤ span(ImA, ImB).)

Solution: For simplicity, we also denote by A and B the natural linear map corresponding to the
matrices A and B, respectively: A : x 7→ Ax and B : x 7→ Bx.
a) (AB)x = A(Bx) ∈ ImA, so ImAB ≤ ImA, thus rankAB ≤ rankA. On the other hand, if

Bx = 0, then (AB)x = A0 = 0, so KerB ≤ KerAB, which implies by the dimension theorem
that rankAB ≤ rankB. The two inequalities together prove the statement.

b) {(A + B)x |x ∈ Kn } = {Ax + Bx |x ∈ Kn } ≤ ImA + ImB. In general, dim(U + W ) ≤
dimU + dimW for the subspaces U,W ≤ V , since the union of the bases of U and W clearly
spans U +W := span(U,W ), and its maximal independent subset will be a basis of U +W .
This gives in our case that rank(A+B) ≤ rankA+rankB. If we apply this for A+B and −B,
we get rankA = rank((A+B) + (−B)) ≤ rank(A+B) + rank(−B) = rank(A+B) + rankB,
implying that rank(A+B) ≥ rankA− rankB, and similarly, rank(A+B) ≥ rankB− rankA.
The two together gives that rank(A+B) ≥ | rankA− rankB|.

6. Show that for any matrix A ∈ Km×n and any invertible matrices B ∈ Km×m and C ∈ Kn×n, we
have rankBA = rankAC = rankA.
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Solution: Problem 5.a) implies that rankBA ≤ rankA, and rankA = rankB−1(BA) ≤ rankBA,
so rankBA = rankA, and similarly, rankAC = rankA.

7. Show that for every matrix A ∈ Km×n of rank r there exist invertible matrices P ∈ Kn×n and
Q ∈ Km×m such that in the matrix B = Q−1AP the elements b11, . . . , brr are 1, and all the other

elements are 0, i.e. as a block matrix B =

[

Ir 0
0 0

]

.

Solution: Version 1: We can transform the matrix A to its reduced row echelon form by elementary
row operations (every elementary row operation is a left multiplication by an invertible matrix, so
the sequence of row operations will be a left multiplication by the product of these matrices, which
is also invertible. Q can be the inverse of this matrix). Then we do elementary column operations:
we move the columns containing leading ones to the left, then use these to make all the other
columns zero. Every elementary column operation is a right multiplication by an invertible matrix,
so the sequence of these operations can be performed by the right multiplication by the product of
these matrices, which is also invertible (let it be P ). In the end we obtained Q−1AP , which is of
the requested form.

Version 2: The statement is equivalent to saying that we can find a suitable pair of bases such
that the matrix with respect to that pair is in the requested form. Let B2 be a basis of KerA, and
B = B1 ∪ B2 a basis of Kn. Furthermore, let C1 = {Ax |x ∈ B1 }. We show that C1 is linearly

independent. Indeed, if
r
∑

i=1

λiAbi = 0 (where B1 = {bi | i = 1, . . . , r }), then A(
r
∑

i=1

λibi) = 0,

i.e.
r
∑

i=1

λibi ∈ KerA, but the basis of KerA (i.e. B2) is independent from B1, so this implies that

λi = 0 for i = 1, . . . , r. If we now choose a basis C of Km which extends the set C1: C = C1 ∪ C2,

then the matrix of A in the pair of bases B, C is the block matrix

[

Ir 0
0 0

]

. Since the latter matrix

clearly has rank r, and it can be written as Q−1AP with some invertible transition matrices P and
Q, rankA = r by problem 6.

8. Let f be a linear transformation of a 6 dimensional vector space. Which of the following sequences
may give the ranks of f, f2, f3, f4?

a) 3, 4, 2, 2 b) 6, 5, 4, 3 c) 5, 4, 4, 4 d) 5, 3, 2, 1 e) 3, 2, 1, 0

Solution: Let us observe first that Im id ≥ Im f ≥ Im f2 ≥ Im f3 ≥ · · ·, so by using the notation
ri = rank fi ( with r0 := rank id = dimV ), we get

r0 ≥ r1 ≥ r2 ≥ · · · (∗)

for every linear transformation f : V → V . Furthermore, Im fn = { fn(v) | v ∈ V } =
{ f(fn−1(v)) | v ∈ V } = Im f |Im fn−1 , where f |U is the restriction of f to the subspace U , i.e.
fU : U → V acts on the element of U the same way as f . It follows from the dimension theo-
rem that rn = dim Im f |Im fn−1 = rn−1 − dimKer f |Im fn−1 , i.e. rn−1 − rn = dimKer f |Im fn−1 =
dim(Ker f ∩ Im f |Im fn−1). Since the latter form a decreasing sequence, we get that

r0 − r1 ≥ r1 − r0 ≥ r2 − r1 ≥ · · · (∗∗).

By (∗), the sequence in a) cannot be a sequence of ranks, and by (∗∗) b) and d) are also impossible.
For c) and e) we can give suitable transformations.

c) b1 7→ b2 7→ 0, bi 7→ bi, if i = 3, 4, 5, 6.
e) b1 7→ 0, b2 7→ 0, b3 7→ b4 7→ b5 7→ b6 7→ 0.

9. Show that every 3× 3 real matrix has an eigenvector.

Solution: The characteristic polynomial −x3 + a2x
2 + a1x + a0 must have at least one real root

(since its limit in −∞ is +∞, and in +∞ is −∞). So the matrix has a real eigenvalue λ, and for
the real eigenvalue we can find real eigenvectors by solving the system of equations (A− λI)x = 0

over R.
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10. Prove that every eigenvector of A is an eigenvector of A2. Is the reverse statement true?

Solution: If v is an eigenvector for the eigenvalue λ, then A2
v = A(Av) = A(λv) = λAv = λ2

v.
The reverse statement is usually not true, for example the rotation of the plane about the origin
by 90◦ has no real eigenvector, while for its square every nonzero vector is an eigenvector.

11. Which are those n× n real matrices for which every nonzero element of Rn is an eigenvector?

Solution: We show that only the scalar matrices λI have this property. If A had eigenvectors u

and v corresponding to two different eigenvalues λ and µ, respectively, then these were independent
(if one were a scalar multiple of the other then the corresponding eigenvalues would be the same).
But by the condition, u+v would also be an eigenvector: A(u+v) = νu+νv. On the other hand,
A(u+ v) = Au+Av = λu+ µv, so νu+ νv = λu+ µv, that is, (ν − λ)u+ (ν − µ)v = 0, and by
the linear independence, ν − λ = ν − µ = 0, i.e. λ = ν = µ, contradicting the assumption.

12. Determine the eigenvalues and eigenvectors of the linear transformations in problem 2.

Solution: a) The real eigenvectors are only those nonzero vectors that are parallel to the z axis,
the eigenvalue corresponding to them is 1.

b) It can be seen immediately from the matrix that its eigenvalues are 1, 2, 3, and the correspond-
ing eigenvectors are the nonzero scalar multiples of the basis elements, i.e. the polynomials a,
bx, and cx2 (a, b, c 6= 0).

c) The characteristic polynomial is |A − xI| = x2 + 2x + 1, which has only one root, −1 (with
multiplicity 2). The eigenvectors corresponding to the eigenvalue −1 are the nonzero solutions

of the equation (A+ I)v = 0, i.e. t·

[

1
2

]

, where t 6= 0.

d) For the matrix A in the solution of 2.d), the characteristic polynomial is
|A − xI| = −x(x − 1)(x + 1), so the eigenvalues are λ = 0,−1, 1, and the corresponding
eigenvectors can be determined by solving the systems of equations (A− λI)x = 0.

The results are: t·





2
1
1



, t·





1
4
2



, and t·





1
0
0



, respectively.

e) This is not a linear transformation, because it maps a vector space to a different space (actually,
to a space whose dimension is also different from that of the first space).

f) We can deduce from the geometric meaning that the eigenvectors are nonzero vectors of the
plane with eigenvalue 1 (so the plane is a 2-dimensional eigenspace), and the normal vectors

of the plane (the nonzero scalar multiples of [ 1 −2 1 ]
T
) with eigenvalue 0.

g) The eigenvectors are the nonzero symmetric matrices (of the form

[

a b

b d

]

) with eigenvalue 1,

and the nonzero skew symmetric matrices (of the form

[

0 b

−b 0

]

) with eigenvalue −1. There

cannot be any other real eigenvalues, because the eigenspaces are independent and the sum of
their dimensions is 4, the dimension of the whole space R

2×2.

13. For which intergers c is there an integral polynomial f(x) with f(1) = 0, f(2) = 2 és f(0) = c?

Solution: Let us calculate the interpolating polynomial over Q. For the condition f(1) = 0
we get p1(x) ≡ 0. If we add the new condition f(2) = 2, we see that p2(x) = 0 + (x − 1)a,
where 2 = p2(2) = a, so a = 2 and p2(x) = 2x − 2. Finally, adding the third condition, we get
that p3(x) = 2x − 2 + b(x − 1)(x − 2), and c = p3(0) = −2 + 2b, so b = c

2
+ 1, and p3(x) =

2x − 2 + ( c
2
+ 1)(x − 1)(x − 2) = ( c

2
+ 1)x2 + (−1 − 3c

2
)x+ c, which has integer coefficients if c is

an even integer.
If c is odd, then the second conditions contradicts the third when the polynomial has integer
coefficients: if we substitute 2 and 0, the value of the polynomial should be the same modulo 2. (or
we can simply consider the integral polynomial as a polynomial over F2). So there is an integral
polynomial with the given values if and only if c is even.


