1. Write the vector \mathbf{b} as the sum of a vector which is orthogonal to \mathbf{a} and a vector which is parallel to a if
a) $\mathbf{a}=(1,-2,0,1), \quad \mathbf{b}=(3,1,1,1)$;
b) $\mathbf{a}=(1+i, 1-i), \quad \mathbf{b}=(i, 3-i)$.

Solution: a) The component parallel with \mathbf{a} is the orthogonal projection of \mathbf{b} on \mathbf{a}, which is $\mathbf{b}^{\prime}=$ $\frac{\langle\mathbf{a}, \mathbf{b}\rangle}{|\mathbf{a}|^{2}} \mathbf{a}=\frac{2}{6} \mathbf{a}=\left(\frac{1}{3},-\frac{2}{3}, 0, \frac{1}{3}\right)$, and the component orthogonal to \mathbf{a} is $\mathbf{b}-\mathbf{b}^{\prime}=\left(\frac{8}{3}, \frac{5}{3}, 1, \frac{2}{3}\right)$.
b) For the orthogonal projection $\mathbf{b}^{\prime}=\frac{\langle\mathbf{a}, \mathbf{b}\rangle}{|\mathbf{a}|^{2}} \mathbf{a}$, we need $\langle\mathbf{a}, \mathbf{b}\rangle=(1-i) i+(1+i)(3-i)=5+3 i$ and $|\mathbf{a}|^{2}=|1+i|^{2}+|1-i|^{2}=1^{2}+1^{2}+1^{2}+1^{2}=4$. So the component parallel with \mathbf{a} is $\mathbf{b}^{\prime}=\frac{\langle\mathbf{a}, \mathbf{b}\rangle}{|\mathbf{a}|^{2}} \mathbf{a}=\frac{5+3 i}{4} \mathbf{a}=\left(\frac{1}{2}+2 i, 2-\frac{1}{2} i\right)$, and the component orthogonal to \mathbf{a} is $\mathbf{b}-\mathbf{b}^{\prime}=\left(-\frac{1}{2}-i, 1-\frac{1}{2} i\right)$.
2. Suppose $\mathbf{b}_{1}, \ldots, \mathbf{b}_{k} \in \mathbb{R}^{n}$ are orthogonal vectors and neither of them is $\mathbf{0}$. Let $W=$ $\operatorname{span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$, and for a vector $\mathbf{v} \in \mathbb{R}^{n}$ define $\mathbf{v}^{\prime}=\sum_{i=1}^{k} \frac{\mathbf{b}_{i}^{T} \mathbf{v}}{\left|\mathbf{b}_{i}\right|^{2}} \mathbf{b}_{i}$. Prove that
a) $\mathbf{v}-\mathbf{v}^{\prime} \perp \mathbf{w}$ for every $\mathbf{w} \in W$;
b) if $\mathbf{v} \notin W$, then $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}, \mathbf{v}-\mathbf{v}^{\prime}\right\}$ is an orthogonal basis of $\operatorname{span}(W \cup\{\mathbf{v}\})$;
c) \mathbf{v}^{\prime} is the element of W closest to $\mathbf{v}\left(\right.$ that is, $\left.\left|\mathbf{v}-\mathbf{v}^{\prime}\right|=\min \{|\mathbf{v}-\mathbf{w}| \mid \mathbf{w} \in W\}\right)$.

Solution: a) Since the \mathbf{b}_{i} are pairwise orthogonal,

$$
\left\langle\mathbf{b}_{j}, \mathbf{v}^{\prime}\right\rangle=\sum_{i=1}^{k}\left\langle\mathbf{b}_{j}, \frac{\mathbf{b}_{i}^{T} \mathbf{v}}{\left|\mathbf{b}_{i}\right|^{2}} \mathbf{b}_{i}\right\rangle=\sum_{i=1}^{k} \frac{\mathbf{b}_{i}^{T} \mathbf{v}}{\left|\mathbf{b}_{i}\right|^{2}}\left\langle\mathbf{b}_{j}, \mathbf{b}_{i}\right\rangle=\mathbf{b}_{j}^{T} \mathbf{v}=\left\langle\mathbf{b}_{j}, \mathbf{v}\right\rangle,
$$

so $\left\langle\mathbf{b}_{j}, \mathbf{v}-\mathbf{v}^{\prime}\right\rangle=0$ for any $j \in\{1, \ldots, k\}$. But then for any $\mathbf{w}=\sum_{j=1}^{k} x_{j} \mathbf{b}_{j} \in W$ we have $\left\langle\mathbf{w}, \mathbf{v}-\mathbf{v}^{\prime}\right\rangle=\sum_{j=1}^{k} \overline{x_{j}}\left\langle\mathbf{b}_{j}, \mathbf{v}-\mathbf{v}^{\prime}\right\rangle=0$.
b) First of all, $\operatorname{span}(W \cup\{\mathbf{v}\})=\operatorname{span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}, \mathbf{v}\right\}=\operatorname{span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}, \mathbf{v}-\mathbf{v}^{\prime}\right\}$, since $\mathbf{v}^{\prime} \in$ $\operatorname{span}\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$. Furthermore, the set $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}, \mathbf{v}-\mathbf{v}^{\prime}\right\}$ is linearly independent: if a nontrivial linear combination of the vectors is 0 , and the last coefficient is nonzero, then \mathbf{v} can be expressed from the others, contradicting the assumption that $v \notin W$; so it would be a combination of the vectors \mathbf{b}_{i}, but those are linearly independent. Finally, this set is orthogonal by part a).
c) For any $\mathbf{w} \in W$, we have $|\mathbf{v}-\mathbf{w}|^{2}=\left|\left(\mathbf{v}-\mathbf{v}^{\prime}\right)+\left(\mathbf{v}^{\prime}-\mathbf{w}\right)\right|^{2}=$ $=\left\langle\left(\mathbf{v}-\mathbf{v}^{\prime}\right)+\left(\mathbf{v}^{\prime}-\mathbf{w}\right),\left(\mathbf{v}-\mathbf{v}^{\prime}\right)+\left(\mathbf{v}^{\prime}-\mathbf{w}\right)\right\rangle=\left\langle\left(\mathbf{v}-\mathbf{v}^{\prime}\right),\left(\mathbf{v}-\mathbf{v}^{\prime}\right)\right\rangle+\left\langle\left(\mathbf{v}^{\prime}-\mathbf{w}\right),\left(\mathbf{v}^{\prime}-\mathbf{w}\right)\right\rangle$, since $\mathbf{v}-\mathbf{v}^{\prime}$ is orthogonal to $\mathbf{v}^{\prime}-\mathbf{w}$ by part a). Thus $|\mathbf{v}-\mathbf{w}|^{2}=\left\langle\left(\mathbf{v}-\mathbf{v}^{\prime}\right),\left(\mathbf{v}-\mathbf{v}^{\prime}\right)\right\rangle+\left\langle\left(\mathbf{v}^{\prime}-\mathbf{w}\right),\left(\mathbf{v}^{\prime}-\mathbf{w}\right)\right\rangle=$ $\left|\mathbf{v}-\mathbf{v}^{\prime}\right|^{2}+\left|\mathbf{v}^{\prime}-\mathbf{w}\right|^{2} \geq\left|\mathbf{v}-\mathbf{v}^{\prime}\right|^{2}$, and the equation holds if and only if $\mathbf{w}=\mathbf{v}^{\prime}$.
3. Use problem 2.b) to find and orthogonal and then an orthonormal basis in the subspace of \mathbb{R}^{4} spanned by $(1,2,-1,0),(2,1,0,1)$ and $(1,-1,1,-1)$.
Solution: Let the three given vectors be called $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$. We replace them one by one using 2.b) so that the spanned subspaces of the first k vectors ($k=1,2,3$) remain the same. The first vector can remain $\mathbf{c}_{1}=\mathbf{b}_{1}=(1,2,-1,0)$. Then $\mathbf{b}_{2}-\mathbf{b}_{2}^{\prime}=\mathbf{b}_{2}-\frac{\left\langle\mathbf{c}_{1}, \mathbf{b}_{2}\right\rangle}{\left|\mathbf{c}_{1}\right|^{2}} \mathbf{c}_{1}=$ $(2,1,0,1)-\frac{4}{6}(1,2,-1,0)=\left(\frac{4}{3},-\frac{1}{3}, \frac{2}{3}, 1\right)$, but we can choose a nonzero scalar multiple instead: $\mathbf{c}_{2}=(4,-1,2,3)$. Then $\mathbf{b}_{3}-\frac{\left\langle\mathbf{c}_{1}, \mathbf{b}_{3}\right\rangle}{\left|\mathbf{c}_{1}\right|^{2}} \mathbf{c}_{1}-\frac{\left\langle\mathbf{c}_{2}, \mathbf{b}_{3}\right\rangle}{\left|\mathbf{c}_{2}\right|^{2}} \mathbf{c}_{2}=(1,-1,1,-1)+\frac{2}{6}(1,2,-1,0)-\frac{4}{30}(4,-1,2,3)=$ $\left(\frac{4}{5},-\frac{1}{5}, \frac{2}{5},-\frac{7}{5}\right)$, so \mathbf{c}_{3} can be a scalar multiple of this: $\mathbf{c}_{3}=(4,-1,2,-7)$. Thus $\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right\}=$ $\{(1,2,-1,0), \quad((4,-1,2,3),(4,-1,2,-7)\}$ is an orthogonal basis of the given subspace, and $\left\{\frac{\mathbf{c}_{1}}{\left|\mathbf{c}_{1}\right|}, \frac{\mathbf{c}_{2}}{\left|\mathbf{c}_{2}\right|}, \frac{\mathbf{c}_{3}}{\left|\mathbf{c}_{3}\right|}\right\}=\left\{\frac{1}{\sqrt{6}}(1,2,-1,0), \frac{1}{\sqrt{30}}(4,-1,2,3), \frac{1}{\sqrt{70}}(4,-1,2,-7)\right\}$ is an orthonormal basis.
4. Prove that the subset $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) \mid x_{1}+x_{2}=x_{4}+x_{5}\right\}$ is a hyperplane in \mathbb{R}^{5}, and determine its normal vector. Calculate the reflection of $(1,0,0,0,0)$ to this hyperplane.
Solution: The subset consists of those vectors \mathbf{x} whose scalar product with $(1,1,0,-1,-1)$ is 0 , so it is the hyperplane with normal vector $\mathbf{a}=(1,1,0,-1,-1)$. We can obtain the reflection of a vector \mathbf{v} on the hyperplane as $\mathbf{v}-\frac{2}{\mid \mathbf{a}^{2}}\langle\mathbf{a}, \mathbf{v}\rangle \mathbf{a}$, so the reflection of $\mathbf{v}=(1,0,0,0,0)$ is $(1,0,0,0,0)-$ $\frac{2}{4}(1,1,0,-1,-1)=\left(\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}\right)$.
5. Give the standard matrix of the orthogonal projection and of the reflection on the hyperplane $x+$ $y-z=0$ in \mathbb{R}^{3}.
Solution: The normal vector of the plane is $(1,1,-1)$, so the standard matrix of the orthogonal projection is $I-\frac{1}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*}$, where \mathbf{a} is the normal vector written as a column vector:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\frac{1}{3}\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & -1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\frac{1}{3}\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] .
$$

The standard matrix of the reflection is $I-\frac{2}{|\mathbf{a}|^{2}} \mathbf{a a}^{*}$:

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\frac{2}{3}\left[\begin{array}{rrr}
1 & 1 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{rrr}
1 & -2 & 2 \\
-2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]
$$

6. Find the standard matrix of a reflection which maps the vector $(1,2,-2)$ to $(3,0,0)$. (Hint: It is the reflection on the bisector plane of the line segment connecting the endpoints of the two vectors.) Solution: The bisector plane has a normal vector $(3,0,0)-(1,2,-2)=(2,-2,2)$, or its scalar multiple, $(1,-1,1)$, and the plane contains the origin, since $|(1,2,-2)|=3=|(3,0,0)|$. So it is a hyperplane $H(\mathbf{a})$ with $\mathbf{a}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$. Thus the standard matrix of the reflection is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\frac{2}{3}\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\frac{2}{3}\left[\begin{array}{rrr}
1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{rrr}
1 & 2 & -2 \\
2 & 1 & 2 \\
-2 & 2 & 1
\end{array}\right] .
$$

One can easily check that this transformation maps $(1,2,-2)$ to $(3,0,0)$.
7. Which of the following matrices are self-adjoint, unitary or normal? Which of the self-adjoint matrices are positive semidefinite or positive definite?

$$
\left.\begin{array}{lll}
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right] & B=\left[\begin{array}{rrr}
0 & 2 & -1 \\
-2 & 0 & 3 \\
1 & -3 & 0
\end{array}\right] \quad C=\left[\begin{array}{rr}
i & i \\
i & -i
\end{array}\right] & D=\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right] \\
E=\left[\begin{array}{rr}
1 & -1 \\
-1 & 3
\end{array}\right] & F=\left[\begin{array}{rr}
-1 & 2+i \\
2-i & -5
\end{array}\right] & G=\left[\begin{array}{rrr}
1 / 3 & -2 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & -1 / 3 \\
2 / 3 & -1 / 3 & 2 / 3
\end{array}\right]
\end{array} \quad H=\left[\begin{array}{cc}
1 & i \\
1+i & 0
\end{array}\right]\right)
$$

Solution: A, E, F are self-adjoint, G is unitary. $B^{*}=-B$, so $B^{*} B=B B^{*}$, that is, B is normal. $C=i\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$ is a scalar multiple of a self-adjoint (so also normal) matrix, thus C is normal. (If M is normal, then $(c M)^{*}(c M)=|c|^{2} M^{*} M=|c|^{2} M M^{*}=(c M)(c M)^{*}$.) D and H are not even normal, because $D^{*} D \neq D D^{*}$ and $H^{*} H \neq H H^{*}$.

We can determine the definiteness A and E by simultaneous row and column operations:
$A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right] \mapsto\left[\begin{array}{rrr}1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right] \mapsto\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right], \quad$ so A is indefinite.
$E=\left[\begin{array}{rr}1 & -1 \\ -1 & 3\end{array}\right] \mapsto\left[\begin{array}{rr}1 & -1 \\ 0 & 2\end{array}\right] \mapsto\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right], \quad$ so E is positive definite.
We check the definiteness of the complex self-adjoint matrix F by calculating its eigenvalues: $\mid F-$ $x I \mid=x^{2}-6 x+5-5=x(x-6)$, so the eigenvalues are 6 and 0 , thus F is positive semidefinite.
8. Give an example of a transformation $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ such that the absolute value of every eigenvalue is 1 but the transformation is not unitary.
Solution: An example can be the Jordan matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, or a matrix (with eigenvalues of absolute value 1), which is diagonalizable but not with a unitary matrix: $\left[\begin{array}{rr}1 & 1 \\ 0 & -1\end{array}\right]$.
9. Give the reduced (and the full) singular value decomposition of the following matrices.
$A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \quad B=\left[\begin{array}{ll}4 & -3\end{array}\right] \quad C=\left[\begin{array}{rr}-1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right] \quad D=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 2 & -4\end{array}\right] \quad E=\left[\begin{array}{rr}2 & -11 \\ 10 & -5\end{array}\right]$
Solution: A is a symmetric matrix with eigenvalues 2 and 0 , so A is also positive semidefinite, thus its spectral decomposition with a unitary transition matrix is a full SVD. The normal eigenvectors of A are: $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ for 2 , and $\frac{1}{\sqrt{2}}\left[\begin{array}{r}-1 \\ 1\end{array}\right]$ for 0 . Hence with the matrices $M=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$, and $\Sigma^{\prime}=\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]$ we have $A=M \Sigma^{\prime} M^{T}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$. The reduced SVD (with $r=1$) is $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right][2] \frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & 1\end{array}\right]$.
$B^{T} B=\left[\begin{array}{rr}16 & -12 \\ -12 & 9\end{array}\right]$, its eigenvalues are 25 and 0 , the only singular value of B is 5 , so $\Sigma=[5]$. For $\lambda_{1}=25$, a normal eigenvector of $B^{T} B$ is $\left[\begin{array}{r}-4 / 5 \\ 3 / 5\end{array}\right]$, so

$$
V=\left[\begin{array}{r}
-4 / 5 \\
3 / 5
\end{array}\right], \quad U=B V \Sigma^{-1}=[-1], \quad B=U \Sigma V^{T}=[-1][5]\left[\begin{array}{ll}
-4 / 5 & 3 / 5
\end{array}\right] .
$$

We can complete V to an orthogonal matrix by adding as a new column a unit vector perpendicular to the first column: $\left[\begin{array}{l}3 / 5 \\ 4 / 5\end{array}\right]$. So $M=\left[\begin{array}{rr}-4 / 5 & 3 / 5 \\ 3 / 5 & 4 / 5\end{array}\right] . U$ is already an orthogonal matrix, thus $M^{\prime}=U=[-1]$. Finally we get Σ^{\prime} by completing Σ with 0 's to a 1×2 matrix: $\Sigma^{\prime}=\left[\begin{array}{ll}5 & 0\end{array}\right]$. The full SVD of B is

$$
B=M^{\prime} \Sigma^{\prime} M^{T}=[-1]\left[\begin{array}{ll}
5 & 0
\end{array}\right]\left[\begin{array}{rr}
-4 / 5 & 3 / 5 \\
3 / 5 & 4 / 5
\end{array}\right] .
$$

$C^{T} C=\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & -1\end{array}\right] \cdot\left[\begin{array}{rr}-1 & 0 \\ 0 & 1 \\ 0 & -1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$.
The eigenvalues of $C^{T} C$ are 2 and 1 with orthonormal eigenvectors $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, respectively. The singular values of C are $\sqrt{2}$ and 1 , so $\Sigma=\left[\begin{array}{cc}\sqrt{2} & 0 \\ 0 & 1\end{array}\right]$.

$$
V=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], U=C V \Sigma^{-1}=\left[\begin{array}{rr}
0 & -1 \\
\frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & 0
\end{array}\right] \text {, so } C=U \Sigma V^{T}=\left[\begin{array}{rr}
0 & -1 \\
\frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & 0
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

is the reduced SVD of C. To get the full SVD, we complete U to an orthogonal matrix with the column $\left[\begin{array}{ccc}0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]^{T}$ to get M^{\prime} and keep the orthogonal matrix V as M, finally we make Σ a 3×2 matrix by adding extra 0 elements. So the full SVD of C is:

$$
C=\left[\begin{array}{rrr}
0 & -1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$D^{T} D=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 5 & -10 \\ 0 & -10 & 20\end{array}\right]$, its eigenvalues are 25,1 and 0 , the singular values of D are 5 and 1, and $\Sigma=\left[\begin{array}{ll}5 & 0 \\ 0 & 1\end{array}\right]$. The normal eigenvectors of $D^{T} D$ form an orthonormal basis in \mathbb{R}^{3} :

$$
\mathbf{b}_{1}=\left[\begin{array}{c}
0 \\
-\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right] \text { for } 25, \mathbf{b}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { for } 1, \mathbf{b}_{3}=\left[\begin{array}{c}
0 \\
\frac{2}{\sqrt{5}} \\
\frac{1}{\sqrt{5}}
\end{array}\right] \text { for } 0
$$

So we get immediately V for the reduced and M for the full SVD.

$$
V=\left[\begin{array}{rr}
0 & 1 \\
-\frac{1}{\sqrt{5}} & 0 \\
\frac{2}{\sqrt{5}} & 0
\end{array}\right], \quad U=D V \Sigma^{-1}=\left[\begin{array}{rr}
0 & 1 \\
-\frac{1}{\sqrt{5}} & 0 \\
-\frac{2}{\sqrt{5}} & 0
\end{array}\right], \quad D=\left[\begin{array}{rr}
0 & 1 \\
-\frac{1}{\sqrt{5}} & 0 \\
-\frac{2}{\sqrt{5}} & 0
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rrr}
0 & -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
1 & 0 & 0
\end{array}\right]
$$

For the full SVD we already have the columns of M and we can complete U similary to an orthogonal matrix M^{\prime} :

$$
D=M^{\prime} \Sigma^{\prime} M^{T}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-\frac{1}{\sqrt{5}} & 0 & \frac{2}{\sqrt{5}} \\
-\frac{2}{\sqrt{5}} & 0 & -\frac{1}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
1 & 0 & 0 \\
0 & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right] .
$$

$E^{T} E=\left[\begin{array}{rr}104 & -72 \\ -72 & 146\end{array}\right]$, its eigenvalues are 200 and 50 , and its normal eigenvectors: $\left[\begin{array}{r}-3 / 5 \\ 4 / 5\end{array}\right]$ and $\left[\begin{array}{l}4 / 5 \\ 3 / 5\end{array}\right]$, and the singular values of E are $10 \sqrt{2}$ and $5 \sqrt{2}$. So

$$
\begin{gathered}
V=\left[\begin{array}{rr}
-\frac{3}{5} & \frac{4}{5} \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right], \quad U=E V \Sigma^{-1}=\left[\begin{array}{cc}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
E=U \Sigma V^{T}=\left[\begin{array}{rr}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
10 \sqrt{2} & 0 \\
0 & 5 \sqrt{2}
\end{array}\right]\left[\begin{array}{rr}
-\frac{3}{5} & \frac{4}{5} \\
\frac{4}{5} & \frac{3}{5}
\end{array}\right],
\end{gathered}
$$

and this is also the full SVD.
10. Use the reduced $S V D$ form of the matrices of problem 9 to
a) find the pseudoinverse of A, and with that the best approximate solution of the inconsistent equation $A \mathbf{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
b) find the matrix of rank 1 closest to the matrix D.

Solution:

$$
\text { a) } A^{+}=U \Sigma^{-1}\left(U^{\prime}\right)^{*}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right][1 / 2][1 / \sqrt{2} \quad 1 / \sqrt{2}]=\left[\begin{array}{ll}
1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4
\end{array}\right] \text {, and from this }
$$

the best approximate solution is $\mathbf{x}=A^{+}\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}3 / 4 \\ 3 / 4\end{array}\right]$. (If we substitute this into the equation, we get $A \mathbf{x}=\left[\begin{array}{l}3 / 2 \\ 3 / 2\end{array}\right]$ instead of $\left[\begin{array}{l}2 \\ 1\end{array}\right]$, but this is the closest that we can get.)
b) $D^{(1)}=\left[\begin{array}{c}0 \\ -\frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}}\end{array}\right][5]\left[\begin{array}{lll}0 & -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\end{array}\right]=\left[\begin{array}{rrr}0 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 2 & -4\end{array}\right]$

