Problem set 3

- 1. Write the vector **b** as the sum of a vector which is orthogonal to **a** and a vector which is parallel to **a** if
 - a) $\mathbf{a} = (1, -2, 0, 1), \quad \mathbf{b} = (3, 1, 1, 1);$
 - b) $\mathbf{a} = (1+i, 1-i), \ \mathbf{b} = (i, 3-i).$
 - Solution: a) The component parallel with **a** is the orthogonal projection of **b** on **a**, which is $\mathbf{b}' = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{|\mathbf{a}|^2} \mathbf{a} = \frac{2}{6} \mathbf{a} = \left(\frac{1}{3}, -\frac{2}{3}, 0, \frac{1}{3}\right)$, and the component orthogonal to **a** is $\mathbf{b} \mathbf{b}' = \left(\frac{8}{3}, \frac{5}{3}, 1, \frac{2}{3}\right)$. b) For the orthogonal projection $\mathbf{b}' = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{|\mathbf{a}|^2} \mathbf{a}$, we need $\langle \mathbf{a}, \mathbf{b} \rangle = (1 - i)i + (1 + i)(3 - i) = 5 + 3i$
 - b) For the orthogonal projection $\mathbf{b}' = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{|\mathbf{a}|^2} \mathbf{a}$, we need $\langle \mathbf{a}, \mathbf{b} \rangle = (1-i)i + (1+i)(3-i) = 5+3i$ and $|\mathbf{a}|^2 = |1+i|^2 + |1-i|^2 = 1^2 + 1^2 + 1^2 + 1^2 = 4$. So the component parallel with \mathbf{a} is $\mathbf{b}' = \frac{\langle \mathbf{a}, \mathbf{b} \rangle}{|\mathbf{a}|^2} \mathbf{a} = \frac{5+3i}{4} \mathbf{a} = \left(\frac{1}{2} + 2i, 2 - \frac{1}{2}i\right)$, and the component orthogonal to \mathbf{a} is $\mathbf{b} - \mathbf{b}' = \left(-\frac{1}{2} - i, 1 - \frac{1}{2}i\right)$.

2. Suppose $\mathbf{b}_1, \ldots, \mathbf{b}_k \in \mathbb{R}^n$ are orthogonal vectors and neither of them is **0**. Let W =span { $\mathbf{b}_1, \ldots, \mathbf{b}_k$ }, and for a vector $\mathbf{v} \in \mathbb{R}^n$ define $\mathbf{v}' = \sum_{i=1}^k \frac{\mathbf{b}_i^T \mathbf{v}}{|\mathbf{b}_i|^2} \mathbf{b}_i$. Prove that

- a) $\mathbf{v} \mathbf{v}' \perp \mathbf{w}$ for every $\mathbf{w} \in W$;
- b) if $\mathbf{v} \notin W$, then $\{\mathbf{b}_1, \ldots, \mathbf{b}_k, \mathbf{v} \mathbf{v}'\}$ is an orthogonal basis of $\operatorname{span}(W \cup \{\mathbf{v}\})$;
- c) \mathbf{v}' is the element of W closest to \mathbf{v} (that is, $|\mathbf{v} \mathbf{v}'| = \min\{|\mathbf{v} \mathbf{w}| | \mathbf{w} \in W\}$).

Solution: a) Since the \mathbf{b}_i are pairwise orthogonal,

$$\langle \mathbf{b}_j, \mathbf{v}' \rangle = \sum_{i=1}^k \langle \mathbf{b}_j, \frac{\mathbf{b}_i^T \mathbf{v}}{|\mathbf{b}_i|^2} \mathbf{b}_i \rangle = \sum_{i=1}^k \frac{\mathbf{b}_i^T \mathbf{v}}{|\mathbf{b}_i|^2} \langle \mathbf{b}_j, \mathbf{b}_i \rangle = \mathbf{b}_j^T \mathbf{v} = \langle \mathbf{b}_j, \mathbf{v} \rangle,$$

so $\langle \mathbf{b}_j, \mathbf{v} - \mathbf{v}' \rangle = 0$ for any $j \in \{1, \dots, k\}$. But then for any $\mathbf{w} = \sum_{j=1}^k x_j \mathbf{b}_j \in W$ we have $\langle \mathbf{w}, \mathbf{v} - \mathbf{v}' \rangle = \sum_{j=1}^k \overline{x_j} \langle \mathbf{b}_j, \mathbf{v} - \mathbf{v}' \rangle = 0.$

- b) First of all, $\operatorname{span}(W \cup \{\mathbf{v}\}) = \operatorname{span}\{\mathbf{b}_1, \dots, \mathbf{b}_k, \mathbf{v}\} = \operatorname{span}\{\mathbf{b}_1, \dots, \mathbf{b}_k, \mathbf{v} \mathbf{v'}\}$, since $\mathbf{v'} \in \operatorname{span}\{\mathbf{b}_1, \dots, \mathbf{b}_k\}$. Furthermore, the set $\{\mathbf{b}_1, \dots, \mathbf{b}_k, \mathbf{v} \mathbf{v'}\}$ is linearly independent: if a nontrivial linear combination of the vectors is 0, and the last coefficient is nonzero, then \mathbf{v} can be expressed from the others, contradicting the assumption that $v \notin W$; so it would be a combination of the vectors \mathbf{b}_i , but those are linearly independent. Finally, this set is orthogonal by part a).
- c) For any $\mathbf{w} \in W$, we have $|\mathbf{v} \mathbf{w}|^2 = |(\mathbf{v} \mathbf{v}') + (\mathbf{v}' \mathbf{w})|^2 = |(\mathbf{v} \mathbf{v}') + (\mathbf{v}' \mathbf{w}), (\mathbf{v} \mathbf{v}') + (\mathbf{v}' \mathbf{w})|^2 = \langle (\mathbf{v} \mathbf{v}'), (\mathbf{v} \mathbf{v}') \rangle + \langle (\mathbf{v}' \mathbf{w}), (\mathbf{v}' \mathbf{w}) \rangle$, since $\mathbf{v} \mathbf{v}'$ is orthogonal to $\mathbf{v}' \mathbf{w}$ by part a). Thus $|\mathbf{v} \mathbf{w}|^2 = \langle (\mathbf{v} \mathbf{v}'), (\mathbf{v} \mathbf{v}') \rangle + \langle (\mathbf{v}' \mathbf{w}), (\mathbf{v}' \mathbf{w}) \rangle = |\mathbf{v} \mathbf{v}'|^2 + |\mathbf{v}' \mathbf{w}|^2 \geq |\mathbf{v} \mathbf{v}'|^2$, and the equation holds if and only if $\mathbf{w} = \mathbf{v}'$.
- **3.** Use problem 2.b) to find and orthogonal and then an orthonormal basis in the subspace of \mathbb{R}^4 spanned by (1, 2, -1, 0), (2, 1, 0, 1) and (1, -1, 1, -1).

Solution: Let the three given vectors be called $\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3$. We replace them one by one using 2.b) so that the spanned subspaces of the first k vectors (k = 1, 2, 3) remain the same. The first vector can remain $\mathbf{c}_1 = \mathbf{b}_1 = (1, 2, -1, 0)$. Then $\mathbf{b}_2 - \mathbf{b}_2' = \mathbf{b}_2 - \frac{\langle \mathbf{c}_1, \mathbf{b}_2 \rangle}{|\mathbf{c}_1|^2} \mathbf{c}_1 = (2, 1, 0, 1) - \frac{4}{6}(1, 2, -1, 0) = (\frac{4}{3}, -\frac{1}{3}, \frac{2}{3}, 1)$, but we can choose a nonzero scalar multiple instead: $\mathbf{c}_2 = (4, -1, 2, 3)$. Then $\mathbf{b}_3 - \frac{\langle \mathbf{c}_1, \mathbf{b}_3 \rangle}{|\mathbf{c}_1|^2} \mathbf{c}_1 - \frac{\langle \mathbf{c}_2, \mathbf{b}_3 \rangle}{|\mathbf{c}_2|^2} \mathbf{c}_2 = (1, -1, 1, -1) + \frac{2}{6}(1, 2, -1, 0) - \frac{4}{30}(4, -1, 2, 3) = (\frac{4}{5}, -\frac{1}{5}, \frac{2}{5}, -\frac{7}{5})$, so \mathbf{c}_3 can be a scalar multiple of this: $\mathbf{c}_3 = (4, -1, 2, -7)$. Thus $\{\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3\} = \{(1, 2, -1, 0), ((4, -1, 2, 3), (4, -1, 2, -7))\}$ is an orthogonal basis of the given subspace, and $\{\frac{\mathbf{c}_1}{|\mathbf{c}_1|}, \frac{\mathbf{c}_2}{|\mathbf{c}_2|}, \frac{\mathbf{c}_3}{|\mathbf{c}_3|}\} = \{\frac{1}{\sqrt{6}}(1, 2, -1, 0), \frac{1}{\sqrt{30}}(4, -1, 2, 3), \frac{1}{\sqrt{70}}(4, -1, 2, -7)\}$ is an orthonormal basis.

- **4.** Prove that the subset $\{(x_1, x_2, x_3, x_4, x_5) | x_1 + x_2 = x_4 + x_5\}$ is a hyperplane in \mathbb{R}^5 , and determine its normal vector. Calculate the reflection of (1, 0, 0, 0, 0) to this hyperplane.
 - Solution: The subset consists of those vectors \mathbf{x} whose scalar product with (1, 1, 0, -1, -1) is 0, so it is the hyperplane with normal vector $\mathbf{a} = (1, 1, 0, -1, -1)$. We can obtain the reflection of a vector \mathbf{v} on the hyperplane as $\mathbf{v} \frac{2}{|\mathbf{a}|^2} \langle \mathbf{a}, \mathbf{v} \rangle \mathbf{a}$, so the reflection of $\mathbf{v} = (1, 0, 0, 0, 0)$ is $(1, 0, 0, 0, 0) \frac{2}{4}(1, 1, 0, -1, -1) = (\frac{1}{2}, -\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2})$.
- 5. Give the standard matrix of the orthogonal projection and of the reflection on the hyperplane x + y z = 0 in \mathbb{R}^3 .

Solution: The normal vector of the plane is (1, 1, -1), so the standard matrix of the orthogonal projection is $I - \frac{1}{|\mathbf{a}|^2} \mathbf{a} \mathbf{a}^*$, where \mathbf{a} is the normal vector written as a column vector:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

The standard matrix of the reflection is $I - \frac{2}{|\mathbf{a}|^2} \mathbf{a} \mathbf{a}^*$:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

6. Find the standard matrix of a reflection which maps the vector (1, 2, -2) to (3, 0, 0). (Hint: It is the reflection on the bisector plane of the line segment connecting the endpoints of the two vectors.) Solution: The bisector plane has a normal vector (3, 0, 0) - (1, 2, -2) = (2, -2, 2), or its scalar multiple, (1, -1, 1), and the plane contains the origin, since |(1, 2, -2)| = 3 = |(3, 0, 0)|. So it is a hyperplane $H(\mathbf{a})$ with $\mathbf{a} = \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}^T$. Thus the standard matrix of the reflection is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix}.$$

One can easily check that this transformation maps (1, 2, -2) to (3, 0, 0).

7. Which of the following matrices are self-adjoint, unitary or normal? Which of the self-adjoint matrices are positive semidefinite or positive definite?

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 2 & -1 \\ -2 & 0 & 3 \\ 1 & -3 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} i & i \\ i & -i \end{bmatrix} \qquad D = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$
$$E = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix} \qquad F = \begin{bmatrix} -1 & 2+i \\ 2-i & -5 \end{bmatrix} \qquad G = \begin{bmatrix} 1/3 & -2/3 & -2/3 \\ 2/3 & 2/3 & -1/3 \\ 2/3 & -1/3 & 2/3 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & i \\ 1+i & 0 \end{bmatrix}$$
Solution: $A = E$ is an solid adjoint. G is unitary $B^* = -B$ so $B^*B = BB^*$ that is B is normal

Solution: A, E, F are self-adjoint, G is unitary. $B^* = -B$, so $B^*B = BB^*$, that is, B is normal. $C = i \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ is a scalar multiple of a self-adjoint (so also normal) matrix, thus C is normal. (If M is normal, then $(cM)^*(cM) = |c|^2 M^* M = |c|^2 M M^* = (cM)(cM)^*$.) D and H are not even normal, because $D^*D \neq DD^*$ and $H^*H \neq HH^*$.

We can determine the definiteness A and E by simultaneous row and column operations:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \text{ so } A \text{ is indefinite.}$$
$$E = \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \text{ so } E \text{ is positive definite.}$$

We check the definiteness of the complex self-adjoint matrix F by calculating its eigenvalues: $|F - xI| = x^2 - 6x + 5 - 5 = x(x - 6)$, so the eigenvalues are 6 and 0, thus F is positive semidefinite.

- 2017 fall
- 8. Give an example of a transformation $\mathbb{C}^n \to \mathbb{C}^n$ such that the absolute value of every eigenvalue is 1 but the transformation is not unitary.

Solution: An example can be the Jordan matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, or a matrix (with eigenvalues of absolute value 1), which is diagonalizable but not with a unitary matrix: $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$.

9. Give the reduced (and the full) singular value decomposition of the following matrices.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 4 & -3 \end{bmatrix} \quad C = \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 2 & -4 \end{bmatrix} \quad E = \begin{bmatrix} 2 & -11 \\ 10 & -5 \end{bmatrix}$$

Solution: A is a symmetric matrix with eigenvalues 2 and 0, so A is also positive semidefinite, thus its spectral decomposition with a unitary transition matrix is a full SVD. The normal eigenvectors of A are: $\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$ for 2, and $\frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1 \end{bmatrix}$ for 0. Hence with the matrices $M = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1\\1 & 1 \end{bmatrix}$, and $\Sigma' = \begin{bmatrix} 2 & 0\\0 & 0 \end{bmatrix}$ we have $A = M\Sigma'M^T = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1\\1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0\\0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\-1 & 1 \end{bmatrix}$. The reduced SVD (with r = 1) is $\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \end{bmatrix}$. $B^T B = \begin{bmatrix} 16 & -12\\-12 & 9 \end{bmatrix}$, its eigenvalues are 25 and 0, the only singular value of B is 5, so $\Sigma = \begin{bmatrix} 5 \end{bmatrix}$.

For $\lambda_1 = 25$, a normal eigenvector of $B^T B$ is $\begin{bmatrix} -4/5 \\ 3/5 \end{bmatrix}$, so

$$V = \begin{bmatrix} -4/5 \\ 3/5 \end{bmatrix}, \quad U = BV\Sigma^{-1} = \begin{bmatrix} -1 \end{bmatrix}, \quad B = U\Sigma V^T = \begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} 5 \end{bmatrix} \begin{bmatrix} -4/5 & 3/5 \end{bmatrix}$$

We can complete V to an orthogonal matrix by adding as a new column a unit vector perpendicular to the first column: $\begin{bmatrix} 3/5\\4/5 \end{bmatrix}$. So $M = \begin{bmatrix} -4/5 & 3/5\\3/5 & 4/5 \end{bmatrix}$. U is already an orthogonal matrix, thus $M' = U = \begin{bmatrix} -1 \end{bmatrix}$. Finally we get Σ' by completing Σ with 0's to a 1×2 matrix: $\Sigma' = \begin{bmatrix} 5 & 0 \end{bmatrix}$. The full SVD of B is

$$B = M' \Sigma' M^T = \begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} -4/5 & 3/5 \\ 3/5 & 4/5 \end{bmatrix}.$$

 $C^{T}C = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$

The eigenvalues of $C^T C$ are 2 and 1 with orthonormal eigenvectors $\begin{bmatrix} 0\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\0 \end{bmatrix}$, respectively. The singular values of C are $\sqrt{2}$ and 1, so $\Sigma = \begin{bmatrix} \sqrt{2} & 0\\0 & 1 \end{bmatrix}$.

$$V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ U = CV\Sigma^{-1} = \begin{bmatrix} 0 & -1 \\ \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}, \text{ so } C = U\Sigma V^T = \begin{bmatrix} 0 & -1 \\ \frac{1}{\sqrt{2}} & 0 \\ -\frac{1}{\sqrt{2}} & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

is the reduced SVD of C. To get the full SVD, we complete U to an orthogonal matrix with the column $\begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$ to get M' and keep the orthogonal matrix V as M, finally we make Σ a 3×2 matrix by adding extra 0 elements. So the full SVD of C is:

$$C = \begin{bmatrix} 0 & -1 & 0\\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0\\ 0 & 1\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}$$

Applied algebra

Problem set 3/4

 $D^{T}D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & -10 \\ 0 & -10 & 20 \end{bmatrix}, \text{ its eigenvalues are 25, 1 and 0, the singular values of } D \text{ are 5 and 1,}$ and $\Sigma = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}.$ The normal eigenvectors of $D^{T}D$ form an orthonormal basis in \mathbb{R}^{3} :

$$\mathbf{b}_1 = \begin{bmatrix} 0\\ -\frac{1}{\sqrt{5}}\\ \frac{2}{\sqrt{5}} \end{bmatrix} \text{ for } 25, \ \mathbf{b}_2 = \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} \text{ for } 1, \ \mathbf{b}_3 = \begin{bmatrix} 0\\ \frac{2}{\sqrt{5}}\\ \frac{1}{\sqrt{5}} \end{bmatrix} \text{ for } 0$$

So we get immediately V for the reduced and M for the full SVD.

$$V = \begin{bmatrix} 0 & 1\\ -\frac{1}{\sqrt{5}} & 0\\ \frac{2}{\sqrt{5}} & 0 \end{bmatrix}, \quad U = DV\Sigma^{-1} = \begin{bmatrix} 0 & 1\\ -\frac{1}{\sqrt{5}} & 0\\ -\frac{2}{\sqrt{5}} & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 1\\ -\frac{1}{\sqrt{5}} & 0\\ -\frac{2}{\sqrt{5}} & 0 \end{bmatrix} \begin{bmatrix} 5 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}\\ 1 & 0 & 0 \end{bmatrix}$$

For the full SVD we already have the columns of M and we can complete U similarly to an orthogonal matrix M':

$$D = M' \Sigma' M^T = \begin{bmatrix} 0 & 1 & 0 \\ -\frac{1}{\sqrt{5}} & 0 & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & 0 & -\frac{1}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ 1 & 0 & 0 \\ 0 & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}$$

 $E^{T}E = \begin{bmatrix} 104 & -72 \\ -72 & 146 \end{bmatrix}$, its eigenvalues are 200 and 50, and its normal eigenvectors: $\begin{bmatrix} -3/5 \\ 4/5 \end{bmatrix}$ and $\begin{bmatrix} 4/5 \\ 3/5 \end{bmatrix}$, and the singular values of E are $10\sqrt{2}$ and $5\sqrt{2}$. So

$$V = \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix}, \quad U = EV\Sigma^{-1} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
$$E = U\Sigma V^{T} = \begin{bmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 10\sqrt{2} & 0 \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{bmatrix},$$

and this is also the full SVD.

- **10.** Use the reduced SVD form of the matrices of problem 9 to
 - a) find the pseudoinverse of A, and with that the best approximate solution of the inconsistent equation $A\mathbf{x} = \begin{bmatrix} 2\\1 \end{bmatrix}$;
 - b) find the matrix of rank 1 closest to the matrix D.

Solution: a) $A^+ = U\Sigma^{-1}(U')^* = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1/2 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/4 & 1/4 \\ 1/4 & 1/4 \end{bmatrix}$, and from this the best approximate solution is $\mathbf{x} = A^+ \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3/4 \\ 3/4 \end{bmatrix}$. (If we substitute this into the equation, we get $A\mathbf{x} = \begin{bmatrix} 3/2 \\ 3/2 \end{bmatrix}$ instead of $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, but this is the closest that we can get.) b) $D^{(1)} = \begin{bmatrix} 0 \\ -\frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{bmatrix} \begin{bmatrix} 5 \end{bmatrix} \begin{bmatrix} 0 & -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 2 & -4 \end{bmatrix}$