Applied algebra Problem set 3 2017 fall

1. Write the vector b as the sum of a vector which is orthogonal to a and a vector which is parallel to
a if
a) a= (1’ _2’ 07 1)7 b: (3’ 17 1’ 1);
b) a=(1+4,1—14), b=(i,3—1).
Solution: a) The component parallel with a is the orthogonal projection of b on a, which is b’ =
b, _2 20 L) and ¢ orthogonal to aisb—b' = 5,2 1,2
a=-a=|-,—-,0,- ], an e component orthogonal toaisb—-b'=(=,=-,1,= .
‘a‘Q 6 37 37 b 3 ) p g 37 37 b 3
b
b) For the orthogonal projection b’ = <T’|2> a, we need (a,b) = (1 —d)i+ (1+19)(3—1) =5+ 3i
a
and |a> = |1 +i? +]1 —i]> = 12+ 124+ 12 + 12 = 4. So the component parallel with

,b 5+ 31 1 1 .
aisb = (a >a = Rkl = (=+4+2i, 2— =i ), and the component orthogonal to a is
|a|? 4 2 2
1 1
b-b =(-—=—i 1—=i
2 2
2. Suppose bq,...,br € R" are orthogonal vectors and mneither of them is 0. Let W =
k
bl
span{bi,..., by}, and for a vector v € R" define v/ = Z ﬁbi. Prove that
i=1 1

a) v—v'Llw for everyw € W;
b) if vg W, then {by,...,bg,v —v'} is an orthogonal basis of span(W U{v });
c) v' is the element of W closest to v (that is, |v —v'| =min{|v —w||w € W }).

Solution:  a) Since the b, are pairwise orthogonal,

k

p blv k blv T
(bj,v') => (b, _‘b,‘z‘bﬁ => :_,b.‘2‘<bj,bv:> =b;v=(b;,v),
i=1 ¢ i=1 "

so (bj, v—v') =0 for any j € {1,...,k}. But then for any w = Zleijj € W we have
(W, v—v') =35, Fj(b;, v—v) =0.

b) First of all, span(W U {v}) = span{by,...,bg,v} = span{by,...,bg,v — v’} since v/ €
span{by,..., by }. Furthermore, the set {b;,...,bg,v — v’} is linearly independent: if a
nontrivial linear combination of the vectors is 0, and the last coefficient is nonzero, then v
can be expressed from the others, contradicting the assumption that v ¢ W; so it would be a
combination of the vectors b;, but those are linearly independent. Finally, this set is orthogonal
by part a).

c¢) For any w € W, we have |[v — w|? = |(v — V) + (v — W)
(V=) (VW) (V=) (v =)} = (v—V), (V=) (v —w), (v —w)), since v—v"
is orthogonal to v/ —w by part a). Thus [v—w]|? = (v—V/), (v—V))+{(v/ —w), (v —w)) =
v —v/|2 +|v/ — w|? > |[v — v'|, and the equation holds if and only if w = v'.

> =

3. Use problem 2.b) to find and orthogonal and then an orthonormal basis in the subspace of R*
spanned by (1,2,-1,0), (2,1,0,1) and (1,—1,1,—1).
Solution: Let the three given vectors be called by, bs,bs. We replace them one by one us-
ing 2.b) so that the spanned subspaces of the first k vectors (k = 1,2,3) remain the same.
The first vector can remain ¢; = b; = (1,2,—1,0). Then by — b, = by — Mcl =

lex|?
(2,1,0,1) — %(1,2,—1,0) = (%,—%, %,1), but we can choose a nonzero scalar multiple instead:
Cy = (45 _152’3) Then b3 - <Té;l‘a23>cl - <(|:z;t‘)23>c2 = (15 _15 1’ _1)+ %(1?25 _150) - %(45 _152’3) =
(% é,%,—%), so c3 can be a scalar multiple of this: c3 = (4,—1,2,—7). Thus {cy,co,c3} =
{(1,2,-1,0), ((4,-1,2,3), (4,—1,2,—7)} is an orthogonal basis of the given subspace, and

{C—l e °—3} — { L(1,2,-1,0), =(4,-1,2,3), =(4,-1,2, —7)} is an orthonormal basis.
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. Prove that the subset {(x1, %o, T3, %4, x5) | L1+ T3 = x4 + 25 } is a hyperplane in R®, and determine
its normal vector. Calculate the reflection of (1,0,0,0,0) to this hyperplane.

Solution: The subset consists of those vectors x whose scalar product with (1,1,0,—1,—1) is 0,
so it is the hyperplane with normal vector a = (1,1,0,—1,—1). We can obtain the reflection of a
vector v on the hyperplane as v — 25 (a, v)a, so the reflection of v = (1,0,0,0,0) is (1,0,0,0,0) —

2 1 1 11 ‘3‘2
1(171707_17_1) = (57 07 2 2)

. Give the standard matrixz of the orthogonal projection and of the reflection on the hyperplane x +
y—2z=0 in R

Solution: The normal vector of the plane is (1,1,—1), so the standard matrix of the orthogonal
projection is I — \aP aa*, where a is the normal vector written as a column vector:

1 0 0 1 1 1 0 0 1 1 1 -1 1 2 -1 1

01 0 3 11[1 1 =1]=10 1 0 —3 1 1 -1 =3 -1 2 1

0 0 1 -1 0 0 1 -1 -1 1 1 1 2

The standard matrix of the reflection is I — i 2|2aa
1 0 0 9 1 1 -1 1 1 -2 2
01 0| —< 1 1 -1 ==1]-2 1 2
00 1| 3|1 -1 1] 3|2 21
. Find the standard matriz of a reflection which maps the vector (1,2,—2) to (3,0,0). (Hint: It is

the reflection on the bisector plane of the line segment connecting the endpoints of the two vectors.)
Solution: The bisector plane has a normal vector (3,0,0) — (1,2,—2) = (2,—2,2), or its scalar
multiple, (1,—1,1), and the plane contains the origin, since |(1,2,—2)| =3 = [(3,0,0)|. So it is a
hyperplane H(a) witha=[1 —1 1]". Thus the standard matrix of the reflection is

1 0 0 9 1 1 0 0 9 1 -1 1 1 1 2 =2
01 0] — 3 —1{[1 -1 1]=(0 1 0| — 3 -1 1 -1 = 3 2 1 2
0 0 1 1 0 0 1 1 -1 1 -2 2 1

One can easily check that this transformation maps (1,2, —2) to (3,0,0).

Which of the following matrices are self-adjoint, unitary or normal? Which of the self-adjoint
matrices are positive semidefinite or positive definite?

(1 1 1 0o 2 -1 . . 5 1
A=1]1 0 1 B=|-2 0 3 C:[Z. _Zl D:[3 2]

11 1 1 -3

- 1/3 —2/3 —2/3 .
T Y ) B 7 | I W

L 2/3 —1/3  2/3

Solution: A, E, F are self-adjoint, G is unitary. B* = —B, so B*B = BB*, that is, B is normal.
C=1 H _” is a scalar multiple of a self-adjoint (so also normal) matrix, thus C' is normal. (If
M is normal, then (cM)*(cM) = |c|?M*M = |cPMM* = (¢cM)(cM)*.) D and H are not even
normal, because D*D # DD* and H*H # HH*.

We can determine the definiteness A and EF by simultaneous row and column operations:

111 1 11 1 00
A=11 0 1 —» 10 -1 0O} —» |O —1 0}, so A is indefinite.
1 11 0 0 0 0 0 0
1 -1 1 -1 10 . o .
b= [_1 3} [0 2] = [0 2], so E is positive definite.

We check the definiteness of the complex self-adjoint matrix F' by calculating its eigenvalues: |F' —
x| = 2% —6x +5—5 = x(z — 6), so the eigenvalues are 6 and 0, thus F is positive semidefinite.
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. Give an example of a transformation C" — C" such that the absolute value of every eigenvalue is
1 but the transformation is not unitary.

Solution: An example can be the Jordan matrix [(1) ﬂ , or a matrix (with eigenvalues of absolute

value 1), which is diagonalizable but not with a unitary matrix: [(1) _ﬂ

. Give the reduced (and the full) singular value decomposition of the following matrices.

-1 0 1 0 0
A:“ ﬂ B=[4 -3] C=]| 0 1 D=0 1 -2 E:[lg __1;)]
0 -1 0 2 —4

Solution: A is a symmetric matrix with eigenvalues 2 and 0, so A is also positive semidefinite, thus
its spectral decomposition with a unitary transition matrix is a full SVD. The normal eigenvectors

! ! . . 1|1 -1
of A are: 73 [1 for 2, and 73 1 for 0. Hence with the matrices M = VAR ik and
2 0 1 -1112 0 1 1
— — T — L 1
= [0 0} we have A = MY M* = \/5[1 1} [0 0]\/5[—1 1] The reduced SVD
. a1 |1 1
T 16 —12| . . . .
B*B = 19 9| its eigenvalues are 25 and 0, the only singular value of B is 5, so ¥ = [5].

For A\; = 25, a normal eigenvector of BT B is [_gﬁ], SO

V= [‘3?2] L U=BVES ' =[-1], B=USVT =[-1][5][=4/5 3/5].
We can complete V' to an orthogonal matrix by adding as a new column a unit vector perpendicular

~13/5 | —4/5 3/5 . .
to the first column: [4/5} So M = [ 3/5 4/5]. U is already an orthogonal matrix, thus

M’ =U = [—1]. Finally we get ¥’ by completing > with 0’s to a 1 x 2 matrix: ¥’ =[5 0]. The
full SVD of B is

B=MYM"=[-1][5 0] [_gfg i?g] :

-1 0
-1 0 O 1 0
CTC = [ } 10 1]= [ }
01 -1 0 —1 0 2
The eigenvalues of CTC are 2 and 1 with orthonormal eigenvectors [ﬂ and [(1)], respectively.

The singular values of C' are V2 and 1,s0 X = [\éi 0].

1
0o -1 0 -1
V:[(l) é},UZCVElz \% 0 ,SOCZUEVT: \% 0 [\éi (1)] [(1) (1)}
L 1
v Y ~d 0

is the reduced SVD of C. To get the full SVD, we complete U to an orthogonal matrix with the
column [0 % % ]T to get M’ and keep the orthogonal matrix V as M, finally we make ¥ a
3 x 2 matrix by adding extra 0 elements. So the full SVD of C is:
0 -1 0
S e HH
= 2 2
L o0 L o oftt 0
V2



10.
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1 0 0
DTD = |0 5 —10 |, its eigenvalues are 25, 1 and 0, the singular values of D are 5 and 1,
0 -10 20
and ¥ = [8 (1)] . The normal eigenvectors of DT D form an orthonormal basis in R3:
0 1 0
b, = _% for 25, by = | 0| for 1, by = \/lg for 0
2 1
VB 0 v
So we get immediately V' for the reduced and M for the full SVD.
0 1 0 1 0 1 ) )
V=|-2% 0|, v=pvsi=|-% 0|, pD=|-2 O [5 0] [0 R 75}
% _% _% 0 1|1 0 0
VB V5 V5

For the full SVD we already have the columns of M and we can complete U similary to an orthogonal
matrix M’:

0 1 0 1 2
Iy —1L 9 2 5 00 0 Vs V3
D=M>M" = 75 /5 010 1 0 0
-2 o0 —L{loo0oo0o|l]|0 X %
NG NG V5 VB
104 =72 . . . . -3/5
T _ .
F'E = [_72 1 46}’ its eigenvalues are 200 and 50, and its normal eigenvectors: [ 4 /5} and
[g?g} and the singular values of E are 10y/2 and 5v/2. So

3 4
V:[_g g] U:Evz—lzl
5 5

E=UxvT =

23l
1 1 9
soow L0 2l s s
and this is also the full SVD.

Use the reduced SVD form of the matrices of problem 9 to
a) find the pseudoinverse of A, and with that the best approximate solution of the inconsistent

equation Ax = Nk
b) find the matriz of rank 1 closest to the matriz D.

Solution:  a) At = US-Y(U)* = Wg] [1/2][1/v2 1/v2] = “?j %ﬂ and from this

the best approximate solution is x = AT [ﬂ = [g;ﬂ . (If we substitute this into the equation,
3/21 . 2 -
we get Ax = 3/2 instead of e but this is the closest that we can get.)
0 00 0
L 12
b) DW= | =5 [[5][0 —% Z]=]0 1 -2
2 0 2 —4

NG



