1. Determine the standard matrix of the linear transformation $f(x, y, z)=(x+z, y, x+y+z)$, the basis of $\operatorname{Ker} f$ and $\operatorname{Im} f$, and the matrix of f in the basis $\mathcal{B}=\{(1,0,0),(0,1,1),(0,2,1)\}$
Solution: Let A be the standard matrix, $B=[f]_{\mathcal{B}}$, and P the transition matrix. Then

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x+z \\
y \\
x+y+z
\end{array}\right] \forall x, y, z \Rightarrow A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

With Gaussian elimination:

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

is the row-echelon form of A, with leading ones in the first and second column, so the first and second column of A form a basis of $\operatorname{Im} A:\{(1,0,1),(0,1,1)\}$, and the solution of

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\mathbf{0} \text { is }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
-t \\
0 \\
t
\end{array}\right]=t \cdot\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] \Rightarrow \text { the basis of } \operatorname{Ker} f \text { is }\{(-1,0,1)\}
$$

Finally,

$$
\begin{gathered}
P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 1 & 1
\end{array}\right], \quad[P \mid I]=\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & \mid & 0 & 1 \\
0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mapsto\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & -1 & 1
\end{array}\right] \mapsto \\
{\left[\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 2 \\
0 & 0 & 1 & 0 & 1 & -1
\end{array}\right] \Rightarrow P^{-1}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 2 \\
0 & 1 & -1
\end{array}\right] \Rightarrow} \\
B=P^{-1} A P=\left[\begin{array}{rrr}
1 & 1 & 1 \\
2 & 3 & 4 \\
-1 & -1 & -1
\end{array}\right] .
\end{gathered}
$$

2. Find the diagonal form of the matrix $A=\left[\begin{array}{ll}-1 & 1 \\ -3 & 3\end{array}\right]$, together with the transition matrix. Calculate A^{n} for any natural number n.
Solution: $\quad k_{A}(x)=|A-x I|=\left|\begin{array}{cc}-1-x & 1 \\ -3 & 3-x\end{array}\right|=x^{2}-2 x=x(x-2)$, so the eigenvalues of A are 2 and 0 . The eigenvectors for 2 are the solutions of $\left[\begin{array}{ll}-3 & 1 \\ -3 & 1\end{array}\right] \mathbf{v}=\mathbf{0}$, that is, $\mathbf{v}=\left[\begin{array}{r}\frac{1}{3} t \\ t\end{array}\right]=\frac{t}{3} \cdot\left[\begin{array}{l}1 \\ 3\end{array}\right]$, for 0 the solutions of $\left[\begin{array}{ll}-1 & 1 \\ -3 & 3\end{array}\right] \mathbf{v}=\mathbf{0}$, that is, $\mathbf{v}=\left[\begin{array}{l}t \\ t\end{array}\right]=t \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Thus $\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ is a basis of eigenvectors. The transition matrix is $P=\left[\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right]$, and $P^{-1} A P=D=\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]$.

$$
\begin{gathered}
{[P \mid I]=\left[\begin{array}{ll|ll}
1 & 1 & \mid & 1 \\
3 & 1 & \mid & 0 \\
\hline
\end{array}\right] \mapsto\left[\begin{array}{rr|r}
1 & 1 & 1 \\
0 & -2 & 0 \\
-3 & 1
\end{array}\right] \mapsto\left[\begin{array}{rrrr}
1 & 0 & -1 / 2 & 1 / 2 \\
0 & 1 & 3 / 2 & -1 / 2
\end{array}\right] \Rightarrow} \\
P^{-1}=\left[\begin{array}{rr}
-\frac{1}{2} & \frac{1}{2} \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right] \Rightarrow A^{n}=P D^{n} P^{-1}=\left[\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{rr}
2^{n} & 0 \\
0 & 0^{n}
\end{array}\right]\left[\begin{array}{rr}
-\frac{1}{2} & \frac{1}{2} \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right]=\left[\begin{array}{rr}
-2^{n-1} & 2^{n-1} \\
-3 \cdot 2^{n-1} & 3 \cdot 2^{n-1}
\end{array}\right] .
\end{gathered}
$$

3. What can be the Jordan normal form of a matrix A whose characteristic polynomial is $k_{A}(x)=$ $(x+1)^{4} x^{2}$ and whose minimal polynomial is $m_{A}(x)=(x+1)^{2} x^{2}$. Give the dimension of the eigenspaces is each case.

Solution: From the characteristic polynomial: the eigenvalue -1 has multiplicity 4 , and 0 has multiplicity 2. From the minimal polynomial: the largest -1 -block is of size 2 , the largest 0 -block is of size 2 . So there can only be one 0 -block, but the sizes of the -1 -blocks can be 2,2 or $2,1,1$:

$$
J_{1}=\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \text { or } \quad J_{2}=\left[\begin{array}{rrrrrr}
-1 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Then $\operatorname{dim} V_{-1}=2$ in the first case and 3 in the second (the number of -1 -blocks), and $\operatorname{dim} V_{0}=2$ in both cases (the number of 0-blocks).
4. Which of the following matrices are self-adjoint, normal or unitary? Determine the definiteness of those which are self-adjoint.
$A=\left[\begin{array}{cc}i & 1 \\ -1 & 1+i\end{array}\right]$
$B=\left[\begin{array}{rrr}2 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 1\end{array}\right]$
$C=\left[\begin{array}{rrr}1 / \sqrt{5} & 0 & 2 / \sqrt{5} \\ 0 & -1 & 0 \\ -2 / \sqrt{5} & 0 & 1 / \sqrt{5}\end{array}\right]$

Solution: A is not even normal:

$$
A^{*} A=\left[\begin{array}{cc}
2 & -1-2 i \\
-1+2 i & 3
\end{array}\right] \quad \text { and } \quad A A^{*}=\left[\begin{array}{cc}
2 & 1-2 i \\
1+2 i & 3
\end{array}\right] \neq A^{*} A
$$

B is self-adjoint because it is real symmetric: $B^{*}=B^{T}=B$, so B is also normal.
C is unitary because its columns form an orthonormal basis in \mathbb{R}^{3} : they have length 1 , and their scalar products are 0 . So C is also normal.
By simultaneous row-column operations:

$$
\begin{aligned}
B= & {\left[\begin{array}{rrr}
2 & 0 & 1 \\
0 & 2 & -1 \\
1 & -1 & 1
\end{array}\right] \stackrel{\text { row }}{\mapsto}\left[\begin{array}{rrr}
2 & 0 & 1 \\
0 & 2 & -1 \\
0 & -1 & \frac{1}{2}
\end{array}\right] \stackrel{\text { col. }}{\mapsto}\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & \frac{1}{2}
\end{array}\right] \stackrel{\text { row }}{\mapsto} } \\
& {\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & 2 & -1 \\
0 & 0 & 0
\end{array}\right] \stackrel{\text { col. }}{\mapsto}\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

The diagonal matrix contains positive numbers and zeros in the diagonal, so B is positive semidefinite.
(Or one can calculate the eigenvalues: $k_{B}(x)=-x^{3}+5 x^{2}-6=x(x-2)(x-3)$, so the eigenvalues are $0,2,3$ all nonnegative, thus B is positive semidefinite.)
5. Determine the reduced $S V D$ of $A=\left[\begin{array}{rr}1 & 1 \\ -1 & 1 \\ 1 & 1\end{array}\right]$, and the best approximating matrix of rank 1 .

Solution: $\quad A^{T} A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right], k_{A^{T} A}=x^{2}-6 x+8=(x-2)(x-4), \lambda_{1}=4, \lambda_{2}=2, \sigma_{1}=2, \sigma_{2}=\sqrt{2}$, $\Sigma=\left[\begin{array}{cc}2 & 0 \\ 0 & \sqrt{2}\end{array}\right]$.
The eigenvectors of $A^{T} A$ for $\lambda_{1}=4$ are the solutions of $\left[\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right] \mathbf{x}=\mathbf{0}$, which are the scalar multiples of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$, so a unit eigenvector is $\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$.
The eigenvectors of $A^{T} A$ for $\lambda_{1}=2$ are the solutions of $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \mathbf{x}=\mathbf{0}$, which are the scalar multiples of $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$, so a unit eigenvector is $\left[\begin{array}{r}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$.

$$
V=\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right], \quad U=A V \Sigma^{-1}=\left[\begin{array}{rr}
1 / \sqrt{2} & 0 \\
0 & 1 \\
1 / \sqrt{2} & 0
\end{array}\right] \quad \Rightarrow
$$

$$
A=U \Sigma V^{T}=\left[\begin{array}{rr}
1 / \sqrt{2} & 0 \\
0 & 1 \\
1 / \sqrt{2} & 0
\end{array}\right] \cdot\left[\begin{array}{cc}
2 & 0 \\
0 & \sqrt{2}
\end{array}\right] \cdot\left[\begin{array}{rr}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

The rank 1 approximation is

$$
A^{(1)}=\left[\begin{array}{c}
1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right] \cdot[2] \cdot[1 / \sqrt{2} \quad 1 / \sqrt{2}]=\left[\begin{array}{ll}
1 & 1 \\
0 & 0 \\
1 & 1
\end{array}\right] .
$$

6. State the following definitions and theorems
a) rank of a matrix;
b) the theorem of polynomial interpolation;
c) standard scalar product in \mathbb{C};
d) theorem about the connection between diagonalizability and the minimal polynomial of a matrix;
e) singular values.

Solution: a) The rank of a matrix $A \in K^{m \times n}$ is the dimension of the column space of the matrix, that is, the maximum of the number of columns in A which are linearly independent.
b) Let K be a field, and suppose that $a_{0}, a_{1}, \ldots, a_{n} \in K$ are different, $b_{0}, b_{1}, \ldots, b_{n} \in K$. Then there exists a unique polynomial $f(x) \in K[x]$ of degree at most n such that $f\left(a_{i}\right)=b_{i}$ for $i=0,1, \ldots, n$.
c) For the column vectors $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$, the scalar product of \mathbf{x} and \mathbf{y} is $\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{*} \mathbf{y}=\sum_{j=1}^{n} \bar{x}_{j} y_{j}$.
d) Suppose that $A \in K^{n \times n}$, and $k_{A}(x)$ can be written as a product of linear polynomials. Then A is diagonalizable if and only if every root of $m_{A}(x)$ has multiplicity 1.
e) For $A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=r$, the singular values of A are $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ if the positive eigenvalues of $A^{T} A$ are $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \cdots \geq \sigma_{r}^{2}$.

