1. Determine the standard matrix of the linear transformation $f(x, y, z)=(x+z, y, x+y+z)$, the basis of $\operatorname{Ker} f$ and $\operatorname{Im} f$, and the matrix of f in the basis $\mathcal{B}=\{(1,0,0),(0,1,1),(0,2,1)\}$
2. Find the diagonal form of the matrix $A=\left[\begin{array}{ll}-1 & 1 \\ -3 & 3\end{array}\right]$, together with the transition matrix. Calculate A^{n} for any natural number n.
3. What can be the Jordan normal form of a matrix A whose characteristic polynomial is $k_{A}(x)=$ $(x+1)^{4} x^{2}$ and whose minimal polynomial is $m_{A}(x)=(x+1)^{2} x^{2}$. Give the dimension of the eigenspaces is each case.
4. Which of the following matrices are self-adjoint, normal or unitary? Determine the definiteness of those which are self-adjoint.
$A=\left[\begin{array}{cc}i & 1 \\ -1 & 1+i\end{array}\right]$
$B=\left[\begin{array}{rrr}2 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & -1 & 1\end{array}\right]$
$C=\left[\begin{array}{rrr}1 / \sqrt{5} & 0 & 2 / \sqrt{5} \\ 0 & -1 & 0 \\ -2 / \sqrt{5} & 0 & 1 / \sqrt{5}\end{array}\right]$
5. Determine the reduced SVD of $A=\left[\begin{array}{rr}1 & 1 \\ -1 & 1 \\ 1 & 1\end{array}\right]$, and the best approximating matrix of rank 1 .
6. State the following definitions and theorems
a) rank of a matrix;
b) the theorem of polynomial interpolation;
c) standard scalar product in \mathbb{C};
d) theorem about the connection between diagonalizability and the minimal polynomial of a matrix;
e) singular values.
