Motivation: PageRank

The PageRank algorithm

See Jeremy Kun's PageRank blogs:

jeremykun.com/2011/06/12/googles-pagerank-introduction

...-a-first-attempt ...-the-final-product

A search engine $\left\{ \begin{array}{l} \text{finds the pages relevant to the given keyword} s \\ \text{lists the most "important" hits} \end{array} \right.$

Which pages are important? We need a way to rank all web pages on the internet.

First idea: Important are those that many links point to.

(But: it should matter what kind of pages point to it.)

Better: Important are those that many important pages point to.

 v_1, v_2, \dots the pages x_1, x_2, \dots , their ranks

$$\left(x_i = \sum_{j \to i} x_j, \text{ where } j \to i \text{ is a link from } v_j \text{ to } v_i\right)$$

(But: here a page with many links gains more influence than its due)

Even better:

$$x_i = \sum_j a_{ij} x_j$$
, where $a_{ij} = \frac{\# links \ j \to i}{\# links \ j \to}$

that is, every page gives the proportionate part of its rank to its links.

This way the rank vector $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \end{bmatrix}$ is "defined with itself".

We want to find a (nonzero) solution for this homogeneous system of linear equations.

If $A = [a_{ij}]_{i,j}$ is the link matrix, **x** the rank vector, then

$$\mathbf{x} = A\mathbf{x}$$

- Is there a nontrivial solution?
- Is the solution unique up to scalar multiples?

Though we are talking about huge matrices (there are close to 2 billion web pages on the internet), to understand how this ranking works, let's look at two very small examples: a graph of 5 and 4 web pages, where arrows represent the links.

 G_1

 G_2

In G_1 there is no link from v_1 (v_1 is a dangling node), so the matrix A above is not defined. However, it is intuitively clear that v_1 should have the highest rank.

Exercise: Find the link matrix A for G_2 , and find a rank vector \mathbf{x} if possible.

Solution:

$$A = \begin{bmatrix} 0 & 1/2 & 1/2 & 1/3 \\ 0 & 0 & 0 & 1/3 \\ 0 & 1/2 & 0 & 1/3 \\ 1 & 0 & 1/2 & 0 \end{bmatrix} \qquad A\mathbf{x} = \mathbf{x}$$

$$(A - I)\mathbf{x} = \mathbf{0}$$

$$A = \begin{bmatrix} 0 & 1/2 & 1/2 & 1/3 \\ 0 & 0 & 0 & 1/3 \\ 0 & 1/2 & 0 & 1/3 \\ 1 & 0 & 1/2 & 0 \end{bmatrix} \qquad A\mathbf{x} = \mathbf{x}$$

$$(A - I)\mathbf{x} = \mathbf{0}$$

$$\begin{bmatrix} -1 & 1/2 & 1/2 & 1/3 & | & 0 \\ 0 & -1 & 0 & 1/3 & | & 0 \\ 0 & 1/2 & -1 & 1/3 & | & 0 \\ 1 & 0 & 1/2 & -1 & | & 0 \end{bmatrix} \qquad \mapsto \mapsto \begin{bmatrix} 1 & 0 & 0 & -3/4 & | & 0 \\ 0 & 1 & 0 & -1/3 & | & 0 \\ 0 & 0 & 1 & -1/2 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \mathbf{x} = \begin{bmatrix} 3/4 \\ 1/3 \\ 1/2 \\ 1 \end{bmatrix}$$

So v_4 has the highest rank though it has only two incoming edge, while v_1 has three. But: the only link from v_1 goes to v_4 , transferring all its importance to v_4 , and v_4 has an extra "vote" from v_3 , as well.

Do we always find a solution?

Theorem

If the graph has no dangling node (a node with no outgoing edges) then $A\mathbf{x} = \mathbf{x}$ has nontrivial solutions.

Proof: $\mathbf{x} \neq \mathbf{0}$, $A\mathbf{x} = \mathbf{x}$ means that \mathbf{x} is an eigenvector of A with eigenvalue 1. Since every column of A adds up to 1, every row of A^T adds up to 1, that is,

$$A^T \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \Rightarrow$$

1 is an eigenvalue of A^T , so 1 is an eigenvalue of A, as well.

$$\left(\det(A^T - I) = \det(A - I)^T = \det(A - I). \right)$$

Definition

Let $A \in \mathbb{R}^{m \times n}$ be a real matrix.

 $A \ge 0$ if $a_{ij} \ge 0$ for all i, j (nonnegative matrix).

A > 0 if $a_{ij} > 0$ for all i, j (positive matrix).

A is a **stochastic matrix** if $A \geq 0$, and every column of A adds up to 1.

A vector **x** is nonnegative/positive/stochastic if it has this property as an $n \times 1$ matrix.

Notation
$$1 = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$
.

 $J = J_n \in \mathbb{R}^{n \times n}$ is the matrix whose each entry is 1.

Note that a nonnegative matrix $A \in \mathbb{R}^{n \times m}$ is stochastic $\Leftrightarrow \mathbf{1}^T A = \mathbf{1}^T$.

Remark: The link matrix in the previous theorem is stochastic, and the proof can be applied to any stochastic matrix, so if $A \in \mathbb{R}^{n \times n}$ is stochastic then the equation $\mathbf{x} = A\mathbf{x}$ has a nontrivial solution.

Another approach leading to the same ranking

Random surfing:

- Start at a random page.
- Click randomly on one of the links in this page.
- Continue clicking at random links, wherever you arrive.

If the probability of getting at page v_i at the t'th step is $x_i^{(t)}$, then:

$$x_i^{(0)} = \frac{1}{n} \qquad n \text{ is the number of web pages}$$

$$x_i^{(t+1)} = \sum a_{ij} x_j^{(t)}, \text{ i.e. } \mathbf{x}^{(t+1)} = A\mathbf{x}^{(t)} \quad \forall t,$$

provided that the surfer doesn't get to a linkless page (say, there are no dangling nodes). Here A is the link matrix defined earlier.

Let
$$\mathbf{x} = \lim_{t \to \infty} \mathbf{x}^{(t)}$$
, if it exists. Then

$$\mathbf{x}^{(t+1)} = A\mathbf{x}^{(t)}$$

$$\downarrow$$

$$\mathbf{x} = A\mathbf{x},$$

so it will be the ranking we want. Thus the rank is the limit of the probability that a random surfer arrives at a given page after many clicks.

Note that A and $\mathbf{x}^{(0)}$ is stochastic, so any $\mathbf{x}^{(t)}$ is stochastic: the product of two nonnegative matrices is clearly nonegative, and $\mathbf{1}^T \mathbf{x}^{(t+1)} = \mathbf{1}^T A \mathbf{x}^{(t)} = \mathbf{1}^T \mathbf{x}^{(t)} = \dots = \mathbf{1}^T \mathbf{x}^{(0)} = 1$. Hence its limit vector \mathbf{x} is also stochastic.

- What can we do if there are dangling nodes? Pick a random URL.
- What can we do if the surfer gets to a part of the graph that has no outgoing edges to the rest of the graph?

Modify the surfing:

the surfer types in a random URL with probability p (even if he could choose a link), he clicks at a link with probability (1-p),

if there is no link then he chooses a random page.

So let A be the link matrix where we put $\frac{1}{n}\mathbf{1}$ in the columns of the dangling nodes, so A is stochastic. $\hat{A} := (1-p)A + p\frac{1}{n}J$. Then the new matrix, \hat{A} is still stochastic and it is positive.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a positive stochastic matrix. Then

- (1) 1 is an eigenvalue with a one-dimensional eigenspace generated by a unique stochastic eigenvector \mathbf{x} ;
- (2) for any nonzero stochastic vector \mathbf{v} , $\lim_{t\to\infty} (\hat{A})^t \mathbf{v} = \mathbf{x}$.

(We shall return to this theorem later.)

Remark: When we want to determine the eigenvector \mathbf{x} , the Gaussian elimination cannot be done for very large matrices. Instead, we can approximate the eigenvector with $(\hat{A})^t \frac{1}{n} \mathbf{1}$: if A is sparse (has relatively few nonzero entries), then $\mathbf{y} \mapsto A\mathbf{y}$ can be calculated easily, and even with the positive matrix \hat{A} :

$$\hat{A}$$
y = $(1 - p)A$ **y** + $p\frac{1}{n}J$ **y** = $(1 - p)A$ **y** + $p\frac{1}{n}$ **1**,

if **y** is stochastic.

Exercise: Calculate the rank vector for G_1 if we modify the link matrix so that the first column is $\frac{1}{5}\mathbf{1}$ (i.e. we add an arrow from v_1 to every vertex, including itself).

Exercise: Take the graph G_3 :

Calculate the rank vector from the corresponding modified link matrix \hat{A} , when we choose p to be $\frac{1}{4}$ or $\frac{1}{2}$, respectively.