Applied algebra Motivation: PageRank 2020, Fall semester

The PageRank algorithm
See Jeremy Kun’s PageRank blogs:
jeremykun.com/2011/06/12/googles-pagerank-introduction
...—a~first-attempt
...—the-final-product
finds the pages relevant to the given keywords

A h i . . .
Search engine { lists the most “important” hits

Which pages are important? We need a way to rank all web pages on the internet.

First idea: Important are those that many links point to.
(But: it should matter what kind of pages point to it.)

Better: Important are those that many important pages point to.

V1, V2, ... the pages
x1,%2,..., their ranks

€T; = E xj, where j — 4 is a link from v; to v;
Jj—

(But: here a page with many links gains more influence than its due)

Even better:
_ #links j — 1

T; = Z a;jxr;, where a;; = - -
- links 7 —
- # J

that is, every page gives the proportionate part of its rank to its links.
X1

This way the rank vector x = | 22 | is “defined with itself”.

We want to find a (nonzero) solution for this homogeneous system of linear equations.
If A = Ja;j]i; is the link matrix, x the rank vector, then

x = Ax

e Is there a nontrivial solution?
e Is the solution unique up to scalar multiples?

Though we are talking about huge matrices (there are close to 2 billion web pages on the
internet), to understand how this ranking works, let’s look at two very small examples: a
graph of 5 and 4 web pages, where arrows represent the links.
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In G there is no link from v; (v is a dangling node), so the matrix A above is not defined.
However, it is intuitively clear that v; should have the highest rank.

Exercise: Find the link matrix A for G5, and find a rank vector x if possible.

Solution: 0 12 1/2 1/31
4]0 0 0 13 Ax E x
“lo 12 0 1/3 v
1 0 1/2 0. (A=Dx =0
~1 1/2 1/2 1/3 | © "1 0 0 —-3/4 | 0 3/4
0 -1 013 | ol o110 =13 |0 _ |13
0 1/2 -1 1/3 | 0 001 —-1/2 | 0 ~1/2
1 0 1/2 -1 | 0 0 0 0 0] 0 1

So vy has the highest rank though it has only two incoming edge, while v; has three. But:
the only link from vy goes to vy, transferring all its importance to v4, and vy has an extra
“vote” from w3, as well.

Do we always find a solution?

Theorem
If the graph has no dangling node (a node with no outgoing edges) then Ax = x has
nontrivial solutions.

Proof: x # 0, Ax = x means that x is an eigenvector of A with eigenvalue 1. Since every
column of A adds up to 1, every row of AT adds up to 1, that is,

1 1
1 1

AT || = =
1 1

1 is an eigenvalue of AT, so 1 is an eigenvalue of A, as well.
((det(AT —I) =det(A—1)T =det(A—1).)
Definition

Let A € R™*" be a real matrix.

A > 0if a;; > 0 for all 7, j (nonnegative matrix).

A > 0if a;; > 0 for all 4, j (positive matrix).

A is a stochastic matrix if A > 0, and every column of A adds up to 1.

A vector x is nonnegative/positive/stochastic if it has this property as an n x 1 matrix.

1
Notation 1 = | :
1
J = J, € R™™" is the matrix whose each entry is 1.

Note that a nonnegative matrix A € R™*™ is stochastic < 174 = 17.
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Remark: The link matrix in the previous theorem is stochastic, and the proof can be
applied to any stochastic matrix, so if A € R™*" is stochastic then the equation x = Ax
has a nontrivial solution.

Another approach leading to the same ranking

Random surfing:

— Start at a random page.

— Click randomly on one of the links in this page.

— Continue clicking at random links, wherever you arrive.

If the probability of getting at page v; at the t’th step is mgt), then:

1
S n is the number of web pages

' n
xEtH) :Zaijxgt), ie. x(tH) = Ax® Vt,

provided that the surfer doesn’t get to a linkless page (say, there are no dangling nodes).
Here A is the link matrix defined earlier.

Let x = lim x®, if it exists. Then
t—o0

(D) Ax®

I <1

Ax

X )

so it will be the ranking we want. Thus the rank is the limit of the probability that a
random surfer arrives at a given page after many clicks.

Note that A and x(?) is stochastic, so any x(*) is stochastic: the product of two nonnegative
matrices is clearly nonegative, and 17x(+D) = 1T4x® = 1Tx®) = = 1Tx0) = 1.
Hence its limit vector x is also stochastic.

— What can we do if there are dangling nodes? Pick a random URL.

— What can we do if the surfer gets to a part of the graph that has no outgoing edges to
the rest of the graph?

Modify the surfing:
the surfer types in a random URL with probability p (even if he could choose a link),
he clicks at a link with probability (1 — p),
if there is no link then he chooses a random page.

So let A be the link matrix where we put %1 in the columns of the dangling nodes, so A

is stochastic. A := (1-pA+ p%J. Then the new matrix, A is still stochastic and it is
positive.
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Theorem

Let A € R™" be a positive stochastic matrix. Then

(1) 1is an eigenvalue with a one-dimensional eigenspace generated by a unique stochastic
eigenvector X;

(2) for any nonzero stochastic vector v, tliglo (A)tv = x.

(We shall return to this theorem later.)

Remark: When we want to determine the eigenvector x, the Gaussian elimination cannot
be done for very large matrices. Instead, we can approximate the eigenvector with (/Al)til:
if A is sparse (has relatively few nonzero entries), then y — Ay can be calculated easily,
and even with the positive matrix A:

. 1 1
Ay = (1 —p)Ay +pﬁJy = (1—-p)Ay +p-1,

if y is stochastic.

Exercise: Calculate the rank vector for GG if we modify the link matrix so that the first
column is %1 (i.e. we add an arrow from v; to every vertex, including itself).

.

G3

Exercise: Take the graph Gj:

Calculate the rank vector from the corresponding modified link matrix /1, when we choose

p to be i or %, respectively.



