
Applied algebra Review of linear maps 2020, Fall semester

Assumed to be known:
Gaussian elimination for solving linear systems of equations
matrix operations (including inversion)
determinant

Vector spaces, linear maps and matrices

Examples:
geometrical vectors of R3,
R

n = {(x1, . . . , xn) |xi ∈ R ∀i },
R

n×m: n×m real matrices,
R[x]: polinomials with real coefficients,
C[x]: polinomials with complex coefficients,
C[0, 1]: continuous real functions defined on [0, 1], etc.

V is a vector space over the field K
vectors: u,v, . . . ∈ V ,
scalars: x, y, α, β, . . . , λ, . . . ∈ K,
operations: u+ v ∈ V , λv ∈ V , 0 ∈ V
identities:

u+ v = v + u λ(u+ v) = λu+ λv
(u+ v) +w = u+ (v +w) (λ+ µ)v = λv + µv
v + 0 = v (λµ)v = λ(µv)

1v = v, 0v = 0

K may be R, C, or other subfields of C, or finite fields, e.g. for a prime p
Fp = { 0, 1, . . . , p− 1 }, +, · modulo p.

Important: here α+ . . .+ α = nα = 0, if p | n,
(α+ β)p = αp + βp (from the binomial theorem)

subspace: nonempty subset of V which is closed under the operations,
notation: W ≤ V means that W is a subspace of V

e.g. the subspaces of R3 are: the origin, lines and planes containing the origin, and
the whole R

3

R[x] ≥ R[x]≤n: real polynomials of degree ≤ n

spanned subspace: the smallest subspace containing a given subset S
= the intersection of all the subspaces containing S
= the set of linear combinations of the elements of S, i.e.
{
∑

λivi |vi ∈ S, λi ∈ K } =: spanS

spanning set S: spans the whole vector space, i.e. ∀ vector can be expressed as a linear
combination of some elements of S

linearly independent set U = {ui | i ∈ I }:
∑

λiui = 0⇒ λi = 0 ∀i, i.e.
any vector in the spanned subspace can be written uniquely as a linear combination
of elements from U
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(How do we check if a set of vectors in Kn is a spanning set, or if it is an independent
set?)

basis: independent spanning set

= maximal independent set (no new elements can be added)

= minimal spanning set (no elements can be dropped)

∀ independent set can be completed to a basis,
∀ spanning set can be reduced to a basis

dimension the number of elements in a basis (well defined!)

The vector spaces in this course will be finite dimensional.

The following are equivalent for a set of vectors B in an n-dimensional space:

(i) B is a basis

(ii) |B| = n, and B independent

(iii) |B| = n, and B is a spanning set.

Example. A basis (the standard basis) of R2×2 is

{[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 0
1 0

]

,

[

0 0
0 1

]}

,

the standard basis of CR is { 1, i }.

In an n-dimensional space with a basis B = {b1, . . . ,bn } (here the order of the elements

is also important!), every vector can be uniquely written in the form
n
∑

i=1
xibi. This defines

the coordinatization with respect to B: the coordinate vector of v =
∑

xibi is

[v]B =





x1
...
xn



 = (x1, . . . , xn)
T

Example. In R
2 , what is [(2, 1)]B with respect to the basis B = {(1, 1), (−1, 1) }?

[(2, 1)]B =

[

3/2
−1/2

]

.

rank (of a set of vectors): the dimension of the generated subspace.

calculation using Gauss elimination:
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rank of a matrix: the dimension of the column space = the dimension of the row space

linear map: f : V →W (V and W are vector spaces over K), which satisfies
f(u+ v) =f(u) + f(v)

f(λv) =λf(v)

Example: congruences of R3 fixing 0, differentiation in R[x].

linear transformation: linear map with V = W

matrix of a linear map:

f :V →W

bases: B C
We need a matrix A such that f : v 7→ w if and only if A · [v]B = [w]C.
∃! such a matrix for B and C:

A = [f ]B,C =
[

[f(b1)]C

∣

∣

∣
. . .

∣

∣

∣
[f(bn)]C

]

matrix of a linear transformation: usually C = B, and
[f ]B := [f ]B,B

Exercise: Determine the matrix of z → z in CR in the basis { 1, i }, or { i, 1 + i }!

Sol.:

[

1 0
0 −1

]

, or

[

−1 −2
0 1

]

, respectively

image: Im f = { f(v) |v ∈ V } ≤W

kernel: Ker f = {v ∈ V | f(v) = 0 } ≤ V

Change of basis

Let B = {b1, . . . ,bn } and B′ = {b′
1, . . . ,b

′
n } be two bases in V . P :=

[

[b′
1]B

∣

∣ . . .
∣

∣[b′
n]B

]

is the transition matrix. Then
[v]B = P [v]B′, i.e. P = [id]B′,B, and
P−1[v]B = [v]B′ .

Exercise: (a new method for an earlier problem) Determine the coordinate vector of (2, 1)
with respect to the basis {(1, 1), (−1, 1) }. This means that we change the standard basis
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B = {(1, 0), (0, 1) } to the new basis B′ = {(1, 1), (−1, 1) }.

The transition matrix is P =

[

1 −1
1 1

]

.

[P |I] =

[

1 −1 | 1 0
1 1 | 0 1

]

7→

[

1 −1 | 1 0
0 2 | −1 1

]

7→

[

1 0 | 1
2

1
2

0 1 | −1
2

1
2

]

= [I|P−1].

[(2, 1)]B′ = P−1

[

2
1

]

=

[

3/2
−1/2

]

The matrix of a linear map with respect to a new pair of bases

Let the transition matrices from B to B′ and from C to C′ be P and Q, respectively,
[f ]B,C = A and [f ]B′,C′ = A′.
Then A′ = Q−1AP :

[f(v)]C′

Q−1

←−[f(v)]C
A
←−[v]B

P
←−[v]B′

The matrix of a linear transformation with respect to a new basis

B, B′ are two bases of V , f : V → V a linear transformation, [f ]B = A, [f ]B′ = A′, and P
the transition matrix from B to B′.
Then A′ = P−1AP .

Exercise: The matrix of the linear transformation z 7→ z of CR with respect to the stan-

dard basis B = { 1, i } is A =

[

1 0
0 −1

]

. What is the matrix of the transformation with

respect to the basis B′ = { i, 1 + i }?

The transition matrix is P =

[

0 1
1 1

]

, P−1 =

[

−1 1
1 0

]

, and the matrix of the transfor-

mation with respect to the new basis is A′ = P−1AP =

[

−1 −2
0 1

]

.

Definition. A,B ∈ Kn×n are similar (notation: A ∼ B), if there is an invertible matrix
P such that B = P−1AP . In other words: A and B are the matrices of the same linear
transformations in two bases (the columns of P give the new basis coordinatized in the old
basis).

f injective if Ker f = {0 } =: 0

f surjective if Im f = W

f isomorphism if f injective and surjective.

Dimension theorem. Let dimV = n and f : V →W be linear. Then

dimKer f + dim Im f = n
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Cor.: If f : V → V and dimV = n then
f iso. ⇔ f inj. ⇔ f surj.

Example: the coordinatization is an isomorphism: for |B| = n
V → Kn

v 7→ [v]B

Theorem: Any map from the basis of a vector space to another vector space can be
extended uniquely to a linear map.

rank of a linear map: rank f = dim Im f = rank[f ]B,C for any pair of bases B, C

It follows from the Dimension Theorem that rank f = dimV − dimKer f .
For dimV = n, a linear map f : V → V is an isomorphism ⇔ rank f = n.

Matrix operations and linear maps:

[g]C,D · [f ]B,C = [g ◦ f ]B,D, where (g ◦ f)v := g(f(v))

[f ]B,C + [g]B,C = [f + g]B,C, where (f + g)(v) := f(v) + g(v)

The rank of a matrix A is the rank of the map x 7→ Ax.

Proposition. For the matrices A, B
1) rank(AB) ≤ min { rankA, rankB }
2) | rankA− rankB| ≤ rank(A+B) ≤ rankA+ rankB

Proof. Use the linear maps defined by the matrices.

Theorem (The rank of a matrix). For A ∈ Km×n the following are equivalent:
(i) rankA = r;
(ii) the rank of x 7→ Ax is r;
(iii) the column space of A is r-dimensional;
(iv) the row space of A is r-dimensional;
(v) in the row echelon form of A there are exactly r nonzero rows (i.e. there are r

leading coefficients);
(vi) A contains an r×r submatrix with nonzero determinant but all its (r+1)×(r+1)

submatrices have zero determinant.
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Theorem (Invertible matrices). For A ∈ Kn×n the following are equivalent:
(i) A is invertible;
(ii) f : Kn → Kn, f : x 7→ Ax is an isomorphism;
(iii) |A| 6= 0;
(iv) the reduced row echelon form of A is I;
(v) rankA = n;
(vi) the system of equations Ax = b has a solution for any b ∈ Kn;
(vii) the system of equations Ax = 0 has only the trivial solution.

Calculating the inverse by Gaussian elimination:

[A|I] 7→7→7→ [I|A−1].

An application: Fisher’s inequality

Theorem. ©P Let C1, . . . , Ck ⊆ { 1, . . . , n } be distinct sets. Suppose that there is a λ > 0
such that |Ci ∩ Cj | = λ (∀i 6= j). Then k ≤ n.

Proof. Case 1: ∃i: |Ci| = λ. Then:

⇒ n ≥ |Ci|+ (k − 1) ≥ k.

Case 2: ∀i |Ci| = λ + ai, ai > 0. The characteristic vector of X ⊆ { 1, . . . , n } is the n
dimensional 0-1-vector, (x1, . . . , xn), where xi = 1 ⇔ i ∈ X . Let M ∈ R

k×n the matrix
whose ith row is the characteristic vector of the set Ci. Then

A = MMT =









λ+ a1 λ λ . . . λ
λ λ+ a2 λ . . . λ
...

. . .

λ+ an









k×k

, since x · y = |X ∩ Y |

We know: rankA ≤ rankM ≤ n.
We will show: |A| 6= 0, so rankA = k.

|A| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1
0 λ+ a1 λ . . . λ
0 λ λ+ a2 . . . λ
...

...
. . .

0 λ . . . λ+ an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(k+1)×(k+1)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1
−λ a1 0 . . . 0
−λ 0 a2 . . . 0
...

. . .

−λ 0 0 . . . an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 + λ
a1

+ . . .+ λ
an

1 1 . . . 1
0 a1 0 . . . 0
0 0 a2 . . . 0
...

. . .

0 0 0 . . . an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1 +
λ

a1
+ . . .+

λ

an
) · a1 · · · · an > 0,

since λ, a1, . . . , an > 0. ⊓⊔

Polynomial interpolation

©P K is a field, a0, . . . , an, b0, . . . , bn ∈ K, a0, . . . , an are pairwise different ⇒

∃!p(x) ∈ K[x]≤n : p(ai) = bi ∀i.

Proof. f : K[x]≤n → Kn+1, f : p(x) 7→







p(a0)
...

p(an)






is a linear map. Ker f = 0, since if

p(x) ∈ Ker f ⇒ p(a0) = · · · = p(an) = 0⇒ p(x) = (x−a0) · · · (x−an)q(x), but deg p ≤ n,
so p(x) = 0. dimKer f+dim Im f = dimK[x]≤n = n+1 implies dim Im f = n+1, that is, f
is surjective, and by Ker f = 0 it is also injective, consequently, f is an isomorphism. This

means that for any b =





b0
...
bn



 there is exactly one p(x) ∈ K[x]≤n such that f(p(x)) = b.

⊓⊔

Newton’s method of interpolation (see also the Lagrange polynomials)

For the given a0, . . . , an, b0, . . . , bn let pi(x) ∈ K[x]≤i be an interpolating polynomial on
a0, . . . , ai. Clearly, p0(x) ≡ b0. If pi is given, then

pi+1(x) = pi(x) + A · (x− a0) · · · (x− ai)

has the same values up to ai for any A ∈ K, and deg pi+1(x) ≤ i+ 1. Furthermore, A can
be chosen so that pi+1(ai+1) = bi+1 (if we substitute ai+1, the coefficient of A is not 0,
since all the aj ’s are different). So in the end we find a suitable pn(x).

Remark: Using Newton’s method, it is easy to improve an interpolation by adding new
points, i.e. measuring the value of the function which we wish to approximate by a poly-
nomial at a few more places.
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Shamir’s secret sharing

We want to share a secret between n people (let the secret be coded by a natural number
c) so that any k of the n people together can find out the secret information, but no k− 1
of them could get closer to the secret if they share their bit of information among them.

Solution: Let p > c be a prime, q(x) ∈ Fp[x]<k, such that q(0) = c (that is, c is the constant
term). The i.’th person is given the value q(i) ∈ Fp (i = 1, . . . , n). Then k people together
know k values of the polynomial, so by the interpolation theorem they can determine the
polynomial and then also its constant term. But if someone knows only k − 1 values of
the polynomial, then q(0) can still be anything: we can still find such an interpolating
polynomial of degree less than k.

Question: Why do we need a polynomial over a finite field Fp? Why do not we choose
an integral polynomial? Because in that case it is not true that with given k − 1 values,
q(0) can be anything. It is possible that, though we find an interpolating polynomial over
Q, the coefficients of that polynomial are not integers.


