Assumed to be known:

Gaussian elimination for solving linear systems of equations matrix operations (including inversion) determinant

Vector spaces, linear maps and matrices

Examples:

geometrical vectors of \mathbb{R}^{3},
$\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R} \forall i\right\}$,
$\mathbb{R}^{n \times m}: n \times m$ real matrices,
$\mathbb{R}[x]$: polinomials with real coefficients,
$\mathbb{C}[x]$: polinomials with complex coefficients,
$C[0,1]$: continuous real functions defined on $[0,1]$, etc.
V is a vector space over the field K
vectors: $\mathbf{u}, \mathbf{v}, \ldots \in V$,
scalars: $x, y, \alpha, \beta, \ldots, \lambda, \ldots \in K$, operations: $\mathbf{u}+\mathbf{v} \in V, \lambda \mathbf{v} \in V, \mathbf{0} \in V$
identities:

$$
\begin{array}{ll}
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} & \lambda(\mathbf{u}+\mathbf{v})=\lambda \mathbf{u}+\lambda \mathbf{v} \\
(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) & (\lambda+\mu) \mathbf{v}=\lambda \mathbf{v}+\mu \mathbf{v} \\
\mathbf{v}+\mathbf{0}=\mathbf{v} & (\lambda \mu) \mathbf{v}=\lambda(\mu \mathbf{v}) \\
& \mathbf{1} \mathbf{v}=\mathbf{v}, \quad 0 \mathbf{v}=\mathbf{0}
\end{array}
$$

K may be \mathbb{R}, \mathbb{C}, or other subfields of \mathbb{C}, or finite fields, e.g. for a prime p
$\mathbb{F}_{p}=\{0,1, \ldots, p-1\},+, \cdot$ modulo p.
Important: here $\alpha+\ldots+\alpha=n \alpha=0$, if $p \mid n$, $(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p}$ (from the binomial theorem)
subspace: nonempty subset of V which is closed under the operations,
notation: $W \leq V$ means that W is a subspace of V
e.g. the subspaces of \mathbb{R}^{3} are: the origin, lines and planes containing the origin, and the whole \mathbb{R}^{3}
$\mathbb{R}[x] \geq \mathbb{R}[x]_{\leq n}$: real polynomials of degree $\leq n$
spanned subspace: the smallest subspace containing a given subset S
$=$ the intersection of all the subspaces containing S
$=$ the set of linear combinations of the elements of S, i.e.
$\left\{\sum \lambda_{i} \mathbf{v}_{i} \mid \mathbf{v}_{i} \in S, \lambda_{i} \in K\right\}=: \operatorname{span} S$
spanning set \mathcal{S} : spans the whole vector space, i.e. \forall vector can be expressed as a linear combination of some elements of \mathcal{S}
linearly independent set $\mathcal{U}=\left\{\mathbf{u}_{i} \mid i \in I\right\}: \sum \lambda_{i} \mathbf{u}_{i}=\mathbf{0} \Rightarrow \lambda_{i}=0 \forall i$, i.e. any vector in the spanned subspace can be written uniquely as a linear combination of elements from \mathcal{U}
(How do we check if a set of vectors in K^{n} is a spanning set, or if it is an independent set?)
basis: independent spanning set
$=$ maximal independent set (no new elements can be added)
$=$ minimal spanning set (no elements can be dropped)
\forall independent set can be completed to a basis,
\forall spanning set can be reduced to a basis
dimension the number of elements in a basis (well defined!)
The vector spaces in this course will be finite dimensional.
The following are equivalent for a set of vectors \mathcal{B} in an n-dimensional space:
(i) \mathcal{B} is a basis
(ii) $|\mathcal{B}|=n$, and \mathcal{B} independent
(iii) $|\mathcal{B}|=n$, and \mathcal{B} is a spanning set.

Example. A basis (the standard basis) of $\mathbb{R}^{2 \times 2}$ is $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$, the standard basis of $\mathbb{C}_{\mathbb{R}}$ is $\{1, i\}$.

In an n-dimensional space with a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ (here the order of the elements is also important!), every vector can be uniquely written in the form $\sum_{i=1}^{n} x_{i} \mathbf{b}_{i}$. This defines the coordinatization with respect to \mathcal{B} : the coordinate vector of $\mathbf{v}=\sum x_{i} \mathbf{b}_{i}$ is

$$
[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\left(x_{1}, \ldots, x_{n}\right)^{T}
$$

Example. In \mathbb{R}^{2}, what is $[(2,1)]_{\mathcal{B}}$ with respect to the basis $\mathcal{B}=\{(1,1),(-1,1)\}$?

$$
[(2,1)]_{\mathcal{B}}=\left[\begin{array}{c}
3 / 2 \\
-1 / 2
\end{array}\right] .
$$

rank (of a set of vectors): the dimension of the generated subspace.
calculation using Gauss elimination:

rank of a matrix: the dimension of the column space $=$ the dimension of the row space linear map: $f: V \rightarrow W$ (V and W are vector spaces over K), which satisfies

$$
\begin{aligned}
f(\mathbf{u}+\mathbf{v}) & =f(\mathbf{u})+f(\mathbf{v}) \\
f(\lambda \mathbf{v}) & =\lambda f(\mathbf{v})
\end{aligned}
$$

Example: congruences of \mathbb{R}^{3} fixing $\mathbf{0}$, differentiation in $\mathbb{R}[x]$.
linear transformation: linear map with $V=W$
matrix of a linear map:

$$
f: V \rightarrow W
$$

bases: $\mathcal{B} \quad \mathcal{C}$
We need a matrix A such that $f: \mathbf{v} \mapsto \mathbf{w}$ if and only if $A \cdot[\mathbf{v}]_{\mathcal{B}}=[\mathbf{w}]_{\mathcal{C}}$.
\exists ! such a matrix for \mathcal{B} and \mathcal{C} :

$$
A=[f]_{\mathcal{B}, \mathcal{C}}=\left[\begin{array}{l|l|l}
{\left[f\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}} & \ldots & {\left[f\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}}}
\end{array}\right]
$$

matrix of a linear transformation: usually $\mathcal{C}=\mathcal{B}$, and

$$
[f]_{\mathcal{B}}:=[f]_{\mathcal{B}, \mathcal{B}}
$$

Exercise: Determine the matrix of $z \rightarrow \bar{z}$ in $\mathbb{C}_{\mathbb{R}}$ in the basis $\{1, i\}$, or $\{i, 1+i\}$!
Sol.: $\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$, or $\left[\begin{array}{rr}-1 & -2 \\ 0 & 1\end{array}\right]$, respectively
image: $\operatorname{Im} f=\{f(\mathbf{v}) \mid \mathbf{v} \in V\} \leq W$
kernel: $\operatorname{Ker} f=\{\mathbf{v} \in V \mid f(\mathbf{v})=\mathbf{0}\} \leq V$

Change of basis

Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ and $\mathcal{B}^{\prime}=\left\{\mathbf{b}_{1}^{\prime}, \ldots, \mathbf{b}_{n}^{\prime}\right\}$ be two bases in $V . P:=\left[\left[\mathbf{b}_{1}^{\prime}\right]_{\mathcal{B}}|\ldots|\left[\mathbf{b}_{n}^{\prime}\right]_{\mathcal{B}}\right]$ is the transition matrix. Then

$$
\begin{aligned}
& {[\mathbf{v}]_{\mathcal{B}}=P[\mathbf{v}]_{\mathcal{B}^{\prime}}, \text { i.e. } P=[i d]_{\mathcal{B}^{\prime}, \mathcal{B}}, \text { and }} \\
& P^{-1}[\mathbf{v}]_{\mathcal{B}}=[\mathbf{v}]_{\mathcal{B}^{\prime}} .
\end{aligned}
$$

Exercise: (a new method for an earlier problem) Determine the coordinate vector of $(2,1)$ with respect to the basis $\{(1,1),(-1,1)\}$. This means that we change the standard basis
$\mathcal{B}=\{(1,0),(0,1)\}$ to the new basis $\mathcal{B}^{\prime}=\{(1,1),(-1,1)\}$.
The transition matrix is $P=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$.

$$
\begin{aligned}
& {[P \mid I]=\left[\begin{array}{rr|rr}
1 & -1 & 1 & 0 \\
1 & 1 & \mid & 1
\end{array}\right] \mapsto\left[\begin{array}{rr|rr}
1 & -1 & 1 & 0 \\
0 & 2 & -1 & 1
\end{array}\right] \mapsto\left[\begin{array}{ll|rr}
1 & 0 & \mid r r \\
0 & 1 & \frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right]=\left[I \mid P^{-1}\right] .} \\
& {[(2,1)]_{\mathcal{B}^{\prime}}=P^{-1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{r}
3 / 2 \\
-1 / 2
\end{array}\right]}
\end{aligned}
$$

The matrix of a linear map with respect to a new pair of bases
Let the transition matrices from \mathcal{B} to \mathcal{B}^{\prime} and from \mathcal{C} to \mathcal{C}^{\prime} be P and Q, respectively, $[f]_{\mathcal{B}, \mathcal{C}}=A$ and $[f]_{\mathcal{B}^{\prime}, \mathcal{C}^{\prime}}=A^{\prime}$.
Then $A^{\prime}=Q^{-1} A P$:

$$
[f(\mathbf{v})]_{\mathcal{C}^{\prime}} \stackrel{Q^{-1}}{\leftarrow}[f(\mathbf{v})]_{\mathcal{C}} \stackrel{A}{\leftrightarrows}[\mathbf{v}]_{\mathcal{B}} \stackrel{P}{\leftrightarrows}[\mathbf{v}]_{\mathcal{B}^{\prime}}
$$

The matrix of a linear transformation with respect to a new basis
$\mathcal{B}, \mathcal{B}^{\prime}$ are two bases of $V, f: V \rightarrow V$ a linear transformation, $[f]_{\mathcal{B}}=A,[f]_{\mathcal{B}^{\prime}}=A^{\prime}$, and P the transition matrix from \mathcal{B} to \mathcal{B}^{\prime}.
Then $A^{\prime}=P^{-1} A P$.
Exercise: The matrix of the linear transformation $z \mapsto \bar{z}$ of $\mathbb{C}_{\mathbb{R}}$ with respect to the standard basis $\mathcal{B}=\{1, i\}$ is $A=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$. What is the matrix of the transformation with respect to the basis $\mathcal{B}^{\prime}=\{i, 1+i\}$?
The transition matrix is $P=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right], \quad P^{-1}=\left[\begin{array}{rr}-1 & 1 \\ 1 & 0\end{array}\right]$, and the matrix of the transformation with respect to the new basis is $A^{\prime}=P^{-1} A P=\left[\begin{array}{rr}-1 & -2 \\ 0 & 1\end{array}\right]$.

Definition. $A, B \in K^{n \times n}$ are similar (notation: $A \sim B$), if there is an invertible matrix P such that $B=P^{-1} A P$. In other words: A and B are the matrices of the same linear transformations in two bases (the columns of P give the new basis coordinatized in the old basis).
f injective if $\operatorname{Ker} f=\{\mathbf{0}\}=: 0$
f surjective if $\operatorname{Im} f=W$
f isomorphism if f injective and surjective.
Dimension theorem. Let $\operatorname{dim} V=n$ and $f: V \rightarrow W$ be linear. Then

$$
\operatorname{dim} \operatorname{Ker} f+\operatorname{dim} \operatorname{Im} f=n
$$

Cor.: If $f: V \rightarrow V$ and $\operatorname{dim} V=n$ then f iso. $\Leftrightarrow f$ inj. $\Leftrightarrow f$ surj.

Example: the coordinatization is an isomorphism: for $|\mathcal{B}|=n$

$$
\begin{aligned}
V & \rightarrow K^{n} \\
\mathbf{v} & \mapsto[\mathbf{v}]_{\mathcal{B}}
\end{aligned}
$$

Theorem: Any map from the basis of a vector space to another vector space can be extended uniquely to a linear map.
rank of a linear map: $\operatorname{rank} f=\operatorname{dim} \operatorname{Im} f=\operatorname{rank}[f]_{\mathcal{B}, \mathcal{C}}$ for any pair of bases \mathcal{B}, \mathcal{C}
It follows from the Dimension Theorem that $\operatorname{rank} f=\operatorname{dim} V-\operatorname{dim} \operatorname{Ker} f$. For $\operatorname{dim} V=n$, a linear map $f: V \rightarrow V$ is an isomorphism $\Leftrightarrow \operatorname{rank} f=n$.

Matrix operations and linear maps:

$$
[g]_{\mathcal{C}, \mathcal{D}} \cdot[f]_{\mathcal{B}, \mathcal{C}}=[g \circ f]_{\mathcal{B}, \mathcal{D}}, \text { where }(g \circ f) \mathbf{v}:=g(f(\mathbf{v}))
$$

$$
[f]_{\mathcal{B}, \mathcal{C}}+[g]_{\mathcal{B}, \mathcal{C}}=[f+g]_{\mathcal{B}, \mathcal{C}}, \text { where }(f+g)(\mathbf{v}):=f(\mathbf{v})+g(\mathbf{v})
$$

The rank of a matrix A is the rank of the map $\mathbf{x} \mapsto A \mathbf{x}$.
Proposition. For the matrices A, B

1) $\operatorname{rank}(A B) \leq \min \{\operatorname{rank} A, \operatorname{rank} B\}$
2) $|\operatorname{rank} A-\operatorname{rank} B| \leq \operatorname{rank}(A+B) \leq \operatorname{rank} A+\operatorname{rank} B$

Proof. Use the linear maps defined by the matrices.
Theorem (The rank of a matrix). For $A \in K^{m \times n}$ the following are equivalent:
(i) $\operatorname{rank} A=r$;
(ii) the rank of $\mathbf{x} \mapsto A \mathbf{x}$ is r;
(iii) the column space of A is r-dimensional;
(iv) the row space of A is r-dimensional;
(v) in the row echelon form of A there are exactly r nonzero rows (i.e. there are r leading coefficients);
(vi) A contains an $r \times r$ submatrix with nonzero determinant but all its $(r+1) \times(r+1)$ submatrices have zero determinant.

Theorem (Invertible matrices). For $A \in K^{n \times n}$ the following are equivalent:
(i) A is invertible;
(ii) $f: K^{n} \rightarrow K^{n}, f: \mathbf{x} \mapsto A \mathbf{x}$ is an isomorphism;
(iii) $|A| \neq 0$;
(iv) the reduced row echelon form of A is I;
(v) $\operatorname{rank} A=n$;
(vi) the system of equations $A \mathbf{x}=\mathbf{b}$ has a solution for any $\mathbf{b} \in K^{n}$;
(vii) the system of equations $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.

Calculating the inverse by Gaussian elimination:

$$
[A \mid I] \mapsto \mapsto \mapsto\left[I \mid A^{-1}\right] .
$$

An application: Fisher's inequality

Theorem. (P) Let $C_{1}, \ldots, C_{k} \subseteq\{1, \ldots, n\}$ be distinct sets. Suppose that there is a $\lambda>0$ such that $\left|C_{i} \cap C_{j}\right|=\lambda(\forall i \neq j)$. Then $k \leq n$.

Proof. Case 1: $\exists i:\left|C_{i}\right|=\lambda$. Then:

$\Rightarrow n \geq\left|C_{i}\right|+(k-1) \geq k$.
Case 2: $\forall i\left|C_{i}\right|=\lambda+a_{i}, a_{i}>0$. The characteristic vector of $X \subseteq\{1, \ldots, n\}$ is the n dimensional 0-1-vector, $\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i}=1 \Leftrightarrow i \in X$. Let $M \in \mathbb{R}^{k \times n}$ the matrix whose i th row is the characteristic vector of the set C_{i}. Then

$$
A=M M^{T}=\left[\begin{array}{ccccc}
\lambda+a_{1} & \lambda & \lambda & \cdots & \lambda \\
\lambda & \lambda+a_{2} & \lambda & \cdots & \lambda \\
\vdots & & \ddots & & \\
& & & & \lambda+a_{n}
\end{array}\right]_{k \times k} \text {, since } \mathbf{x} \cdot \mathbf{y}=|X \cap Y|
$$

We know: $\operatorname{rank} A \leq \operatorname{rank} M \leq n$.
We will show: $|A| \neq 0$, so $\operatorname{rank} A=k$.

$$
|A|=\left|\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
0 & \lambda+a_{1} & \lambda & \ldots & \lambda \\
0 & \lambda & \lambda+a_{2} & \ldots & \lambda \\
\vdots & \vdots & & \ddots & \\
0 & \lambda & \ldots & & \lambda+a_{n}
\end{array}\right|_{(k+1) \times(k+1)}=\left|\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
-\lambda & a_{1} & 0 & \ldots & 0 \\
-\lambda & 0 & a_{2} & \ldots & 0 \\
\vdots & & & \ddots & \\
-\lambda & 0 & 0 & \ldots & a_{n}
\end{array}\right|=
$$

$$
\left|\begin{array}{ccccc}
1+\frac{\lambda}{a_{1}}+\ldots+\frac{\lambda}{a_{n}} & 1 & 1 & \ldots & 1 \\
0 & a_{1} & 0 & \ldots & 0 \\
0 & 0 & a_{2} & \ldots & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \ldots & a_{n}
\end{array}\right|=\left(1+\frac{\lambda}{a_{1}}+\ldots+\frac{\lambda}{a_{n}}\right) \cdot a_{1} \cdots a_{n}>0
$$

since $\lambda, a_{1}, \ldots, a_{n}>0$.

Polynomial interpolation

(P) K is a field, $a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{n} \in K, a_{0}, \ldots, a_{n}$ are pairwise different \Rightarrow

$$
\exists!p(x) \in K[x]_{\leq n}: p\left(a_{i}\right)=b_{i} \forall i .
$$

Proof. $f: K[x]_{\leq n} \rightarrow K^{n+1}, f: p(x) \mapsto\left[\begin{array}{c}p\left(a_{0}\right) \\ \vdots \\ p\left(a_{n}\right)\end{array}\right]$ is a linear map. Ker $f=0$, since if $p(x) \in \operatorname{Ker} f \Rightarrow p\left(a_{0}\right)=\cdots=p\left(a_{n}\right)=0 \Rightarrow p(x)=\left(x-a_{0}\right) \cdots\left(x-a_{n}\right) q(x)$, but $\operatorname{deg} p \leq n$, so $p(x)=0 . \operatorname{dim} \operatorname{Ker} f+\operatorname{dim} \operatorname{Im} f=\operatorname{dim} K[x]_{\leq n}=n+1 \operatorname{implies} \operatorname{dim} \operatorname{Im} f=n+1$, that is, f is surjective, and by $\operatorname{Ker} f=0$ it is also injective, consequently, f is an isomorphism. This means that for any $\mathbf{b}=\left[\begin{array}{c}b_{0} \\ \vdots \\ b_{n}\end{array}\right]$ there is exactly one $p(x) \in K[x]_{\leq n}$ such that $f(p(x))=\mathbf{b}$.

Newton's method of interpolation (see also the Lagrange polynomials)
For the given $a_{0}, \ldots, a_{n}, b_{0}, \ldots, b_{n}$ let $p_{i}(x) \in K[x]_{\leq i}$ be an interpolating polynomial on a_{0}, \ldots, a_{i}. Clearly, $p_{0}(x) \equiv b_{0}$. If p_{i} is given, then

$$
p_{i+1}(x)=p_{i}(x)+A \cdot\left(x-a_{0}\right) \cdots\left(x-a_{i}\right)
$$

has the same values up to a_{i} for any $A \in K$, and $\operatorname{deg} p_{i+1}(x) \leq i+1$. Furthermore, A can be chosen so that $p_{i+1}\left(a_{i+1}\right)=b_{i+1}$ (if we substitute a_{i+1}, the coefficient of A is not 0 , since all the a_{j} 's are different). So in the end we find a suitable $p_{n}(x)$.

Remark: Using Newton's method, it is easy to improve an interpolation by adding new points, i.e. measuring the value of the function which we wish to approximate by a polynomial at a few more places.

Shamir's secret sharing

We want to share a secret between n people (let the secret be coded by a natural number c) so that any k of the n people together can find out the secret information, but no $k-1$ of them could get closer to the secret if they share their bit of information among them.

Solution: Let $p>c$ be a prime, $q(x) \in \mathbb{F}_{p}[x]_{<k}$, such that $q(0)=c$ (that is, c is the constant term). The i.'th person is given the value $q(i) \in \mathbb{F}_{p}(i=1, \ldots, n)$. Then k people together know k values of the polynomial, so by the interpolation theorem they can determine the polynomial and then also its constant term. But if someone knows only $k-1$ values of the polynomial, then $q(0)$ can still be anything: we can still find such an interpolating polynomial of degree less than k.

Question: Why do we need a polynomial over a finite field \mathbb{F}_{p} ? Why do not we choose an integral polynomial? Because in that case it is not true that with given $k-1$ values, $q(0)$ can be anything. It is possible that, though we find an interpolating polynomial over \mathbb{Q}, the coefficients of that polynomial are not integers.

