Assumed to be known:

Gaussian elimination for solving linear systems of equations matrix operations (including inversion) determinant

Vector spaces, linear maps and matrices

Examples:

geometrical vectors of \mathbb{R}^3 , $\mathbb{R}^n = \{(x_1, \ldots, x_n) \mid x_i \in \mathbb{R} \forall i\},$ $\mathbb{R}^{n \times m}$: $n \times m$ real matrices, $\mathbb{R}[x]$: polynomials with real coefficients, $\mathbb{C}[x]$: polynomials with complex coefficients, C[0, 1]: continuous real functions defined on [0, 1], etc.

V is a **vector space** over the field K

vectors: $\mathbf{u}, \mathbf{v}, \ldots \in V$, scalars: $x, y, \alpha, \beta, \ldots, \lambda, \ldots \in K$, operations: $\mathbf{u} + \mathbf{v} \in V$, $\lambda \mathbf{v} \in V$, $\mathbf{0} \in V$ identities:

K may be \mathbb{R} , \mathbb{C} , or other subfields of \mathbb{C} , or finite fields, e.g. for a prime p $\mathbb{F}_p = \{0, 1, \dots, p-1\}, +, \cdot \text{ modulo } p.$

Important: here $\alpha + \ldots + \alpha = n\alpha = 0$, if $p \mid n$, $(\alpha + \beta)^p = \alpha^p + \beta^p$ (from the binomial theorem)

subspace: nonempty subset of V which is closed under the operations,

notation: $W \leq V$ means that W is a subspace of V

e.g. the subspaces of \mathbb{R}^3 are: the origin, lines and planes containing the origin, and the whole \mathbb{R}^3

 $\mathbb{R}[x] \ge \mathbb{R}[x]_{\le n}$: real polynomials of degree $\le n$

spanned subspace: the smallest subspace containing a given subset S

= the intersection of all the subspaces containing S

= the set of linear combinations of the elements of S, i.e.

 $\{\sum \lambda_i \mathbf{v}_i \mid \mathbf{v}_i \in S, \lambda_i \in K\} =: \operatorname{span} S$

spanning set S: spans the whole vector space, i.e. \forall vector can be expressed as a linear combination of some elements of S

linearly independent set $\mathcal{U} = \{ \mathbf{u}_i \mid i \in I \}$: $\sum \lambda_i \mathbf{u}_i = \mathbf{0} \Rightarrow \lambda_i = 0 \quad \forall i, i.e.$

any vector in the spanned subspace can be written uniquely as a linear combination of elements from ${\mathcal U}$

(How do we check if a set of vectors in K^n is a spanning set, or if it is an independent set?)

 ${\bf basis:}$ independent spanning set

- = maximal independent set (no new elements can be added)
- = minimal spanning set (no elements can be dropped)

 \forall independent set can be completed to a basis, \forall spanning set can be reduced to a basis

dimension the number of elements in a basis (well defined!)

The vector spaces in this course will be finite dimensional.

The following are equivalent for a set of vectors \mathcal{B} in an *n*-dimensional space:

- (i) \mathcal{B} is a basis
- (*ii*) $|\mathcal{B}| = n$, and \mathcal{B} independent
- (*iii*) $|\mathcal{B}| = n$, and \mathcal{B} is a spanning set.

Example. A basis (the standard basis) of $\mathbb{R}^{2\times 2}$ is $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$, the standard basis of $\mathbb{C}_{\mathbb{R}}$ is $\{1, i\}$.

In an *n*-dimensional space with a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ (here the order of the elements is also important!), every vector can be uniquely written in the form $\sum_{i=1}^n x_i \mathbf{b}_i$. This defines the coordinatization with respect to \mathcal{B} : the **coordinate vector** of $\mathbf{v} = \sum x_i \mathbf{b}_i$ is

$$[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = (x_1, \dots, x_n)^T$$

Example. In \mathbb{R}^2 , what is $[(2,1)]_{\mathcal{B}}$ with respect to the basis $\mathcal{B} = \{(1,1), (-1,1)\}$?

rank (of a set of vectors): the dimension of the generated subspace. calculation using Gauss elimination:

rank of a matrix: the dimension of the column space = the dimension of the row space

linear map: $f: V \to W$ (V and W are vector spaces over K), which satisfies

$$f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$$

$$f(\lambda \mathbf{v}) = \lambda f(\mathbf{v})$$

Example: congruences of \mathbb{R}^3 fixing **0**, differentiation in $\mathbb{R}[x]$.

linear transformation: linear map with V = W

matrix of a linear map:

 $f: V \to W$ bases: $\mathcal{B} \qquad \mathcal{C}$ We need a matrix A such that $f: \mathbf{v} \mapsto \mathbf{w}$ if and only if $A \cdot [\mathbf{v}]_{\mathcal{B}} = [\mathbf{w}]_{\mathcal{C}}$. $\exists !$ such a matrix for \mathcal{B} and \mathcal{C} :

$$A = [f]_{\mathcal{B},\mathcal{C}} = \left[[f(\mathbf{b}_1)]_{\mathcal{C}} \mid \dots \mid [f(\mathbf{b}_n)]_{\mathcal{C}} \right]$$

matrix of a linear transformation: usually C = B, and

 $[f]_{\mathcal{B}} := [f]_{\mathcal{B},\mathcal{B}}$

Exercise: Determine the matrix of $z \to \overline{z}$ in $\mathbb{C}_{\mathbb{R}}$ in the basis $\{1, i\}$, or $\{i, 1+i\}$!

Sol.:
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
, or $\begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$, respectively

image: Im $f = \{ f(\mathbf{v}) | \mathbf{v} \in V \} \leq W$ kernel: Ker $f = \{ \mathbf{v} \in V | f(\mathbf{v}) = \mathbf{0} \} \leq V$

Change of basis

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{B}' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$ be two bases in V. $P := [[\mathbf{b}'_1]_{\mathcal{B}} | \dots | [\mathbf{b}'_n]_{\mathcal{B}}]$ is the transition matrix. Then

$$[\mathbf{v}]_{\mathcal{B}} = P[\mathbf{v}]_{\mathcal{B}'}$$
, i.e. $P = [id]_{\mathcal{B}',\mathcal{B}}$, and $P^{-1}[\mathbf{v}]_{\mathcal{B}} = [\mathbf{v}]_{\mathcal{B}'}$.

Exercise: (a new method for an earlier problem) Determine the coordinate vector of (2, 1) with respect to the basis $\{(1, 1), (-1, 1)\}$. This means that we change the standard basis

 $\mathcal{B} = \{(1,0), (0,1)\} \text{ to the new basis } \mathcal{B}' = \{(1,1), (-1,1)\}.$ The transition matrix is $P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$

$$[P|I] = \begin{bmatrix} 1 & -1 & | & 1 & 0 \\ 1 & 1 & | & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & -1 & | & 1 & 0 \\ 0 & 2 & | & -1 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & | & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & | & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} = [I|P^{-1}].$$
$$[(2,1)]_{\mathcal{B}'} = P^{-1} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3/2 \\ -1/2 \end{bmatrix}$$

The matrix of a linear map with respect to a new pair of bases

Let the transition matrices from \mathcal{B} to \mathcal{B}' and from \mathcal{C} to \mathcal{C}' be P and Q, respectively, $[f]_{\mathcal{B},\mathcal{C}} = A$ and $[f]_{\mathcal{B}',\mathcal{C}'} = A'$. Then $A' = Q^{-1}AP$:

$$[f(\mathbf{v})]_{\mathcal{C}'} \stackrel{Q^{-1}}{\longleftarrow} [f(\mathbf{v})]_{\mathcal{C}} \stackrel{A}{\longleftarrow} [\mathbf{v}]_{\mathcal{B}} \stackrel{P}{\longleftarrow} [\mathbf{v}]_{\mathcal{B}'}$$

The matrix of a linear transformation with respect to a new basis

 $\mathcal{B}, \mathcal{B}'$ are two bases of $V, f: V \to V$ a linear transformation, $[f]_{\mathcal{B}} = A, [f]_{\mathcal{B}'} = A'$, and P the transition matrix from \mathcal{B} to \mathcal{B}' . Then $A' = P^{-1}AP$.

Exercise: The matrix of the linear transformation $z \mapsto \overline{z}$ of $\mathbb{C}_{\mathbb{R}}$ with respect to the standard basis $\mathcal{B} = \{1, i\}$ is $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. What is the matrix of the transformation with respect to the basis $\mathcal{B}' = \{i, 1+i\}$?

The transition matrix is $P = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$, $P^{-1} = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$, and the matrix of the transformation with respect to the new basis is $A' = P^{-1}AP = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix}$.

Definition. $A, B \in K^{n \times n}$ are similar (notation: $A \sim B$), if there is an invertible matrix P such that $B = P^{-1}AP$. In other words: A and B are the matrices of the same linear transformations in two bases (the columns of P give the new basis coordinatized in the old basis).

- f injective if Ker $f = \{0\} =: 0$
- f surjective if Im f = W
- f isomorphism if f injective and surjective.

Dimension theorem. Let dim V = n and $f: V \to W$ be linear. Then

Review of linear maps/5

2020, Fall semester

Cor.: If $f: V \to V$ and dim V = n then f iso. $\Leftrightarrow f$ inj. $\Leftrightarrow f$ surj.

Example: the coordinatization is an isomorphism: for $|\mathcal{B}| = n$

$$V \to K^n$$
$$\mathbf{v} \mapsto [\mathbf{v}]_{\mathcal{B}}$$

Theorem: Any map from the basis of a vector space to another vector space can be extended uniquely to a linear map.

rank of a linear map: rank $f = \dim \operatorname{Im} f = \operatorname{rank}[f]_{\mathcal{B},\mathcal{C}}$ for any pair of bases \mathcal{B},\mathcal{C}

It follows from the Dimension Theorem that rank $f = \dim V - \dim \operatorname{Ker} f$. For $\dim V = n$, a linear map $f : V \to V$ is an isomorphism \Leftrightarrow rank f = n.

Matrix operations and linear maps:

$$[g]_{\mathcal{C},\mathcal{D}} \cdot [f]_{\mathcal{B},\mathcal{C}} = [g \circ f]_{\mathcal{B},\mathcal{D}}, \text{ where } (g \circ f)\mathbf{v} := g(f(\mathbf{v}))$$

$$[f]_{\mathcal{B},\mathcal{C}} + [g]_{\mathcal{B},\mathcal{C}} = [f+g]_{\mathcal{B},\mathcal{C}}, \text{ where } (f+g)(\mathbf{v}) := f(\mathbf{v}) + g(\mathbf{v})$$

The **rank** of a matrix A is the rank of the map $\mathbf{x} \mapsto A\mathbf{x}$.

Proposition. For the matrices A, B 1) $\operatorname{rank}(AB) \leq \min \{ \operatorname{rank} A, \operatorname{rank} B \}$ 2) $|\operatorname{rank} A - \operatorname{rank} B| \leq \operatorname{rank}(A + B) \leq \operatorname{rank} A + \operatorname{rank} B$

Proof. Use the linear maps defined by the matrices.

Theorem (The rank of a matrix). For $A \in K^{m \times n}$ the following are equivalent: (i) rank A = r;

(ii) the rank of $\mathbf{x} \mapsto A\mathbf{x}$ is r;

- (iii) the column space of A is r-dimensional;
- (iv) the row space of A is r-dimensional;
- (v) in the row echelon form of A there are exactly r nonzero rows (i.e. there are r leading coefficients);

(vi) A contains an $r \times r$ submatrix with nonzero determinant but all its $(r+1) \times (r+1)$ submatrices have zero determinant.

Theorem (Invertible matrices). For $A \in K^{n \times n}$ the following are equivalent:

- (i) A is invertible;
- (ii) $f: K^n \to K^n, f: \mathbf{x} \mapsto A\mathbf{x}$ is an isomorphism;
- (*iii*) $|A| \neq 0$;
- (iv) the reduced row echelon form of A is I;
- (v) rank A = n;
- (vi) the system of equations $A\mathbf{x} = \mathbf{b}$ has a solution for any $\mathbf{b} \in K^n$;
- (vii) the system of equations $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Calculating the inverse by Gaussian elimination:

$$[A|I] \mapsto \mapsto \mapsto [I|A^{-1}].$$

An application: Fisher's inequality

Theorem. (P) Let $C_1, \ldots, C_k \subseteq \{1, \ldots, n\}$ be distinct sets. Suppose that there is a $\lambda > 0$ such that $|C_i \cap C_j| = \lambda \ (\forall i \neq j)$. Then $k \leq n$.

Proof. Case 1: $\exists i: |C_i| = \lambda$. Then:

Case 2: $\forall i \ |C_i| = \lambda + a_i, \ a_i > 0$. The characteristic vector of $X \subseteq \{1, \ldots, n\}$ is the *n* dimensional 0-1-vector, (x_1, \ldots, x_n) , where $x_i = 1 \Leftrightarrow i \in X$. Let $M \in \mathbb{R}^{k \times n}$ the matrix whose *i*th row is the characteristic vector of the set C_i . Then

$$A = MM^{T} = \begin{bmatrix} \lambda + a_{1} & \lambda & \lambda & \dots & \lambda \\ \lambda & \lambda + a_{2} & \lambda & \dots & \lambda \\ \vdots & & \ddots & & \\ & & & & \lambda + a_{n} \end{bmatrix}_{k \times k}, \text{ since } \mathbf{x} \cdot \mathbf{y} = |X \cap Y|$$

We know: rank $A \leq \operatorname{rank} M \leq n$. We will show: $|A| \neq 0$, so rank A = k.

$$|A| = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & \lambda + a_1 & \lambda & \dots & \lambda \\ 0 & \lambda & \lambda + a_2 & \dots & \lambda \\ \vdots & \vdots & & \ddots & \\ 0 & \lambda & \dots & \lambda + a_n \end{vmatrix}_{(k+1) \times (k+1)} = \begin{vmatrix} 1 & 1 & 1 & \dots & 1 \\ -\lambda & a_1 & 0 & \dots & 0 \\ -\lambda & 0 & a_2 & \dots & 0 \\ \vdots & & \ddots & \\ -\lambda & 0 & 0 & \dots & a_n \end{vmatrix} =$$

Review of linear maps/7

$$\begin{vmatrix} 1 + \frac{\lambda}{a_1} + \dots + \frac{\lambda}{a_n} & 1 & 1 & \dots & 1 \\ 0 & a_1 & 0 & \dots & 0 \\ 0 & 0 & a_2 & \dots & 0 \\ \vdots & & \ddots & & \\ 0 & 0 & 0 & \dots & a_n \end{vmatrix} = (1 + \frac{\lambda}{a_1} + \dots + \frac{\lambda}{a_n}) \cdot a_1 \cdots a_n > 0,$$

since $\lambda, a_1, \ldots, a_n > 0$.

Polynomial interpolation

(P) K is a field, $a_0, \ldots, a_n, b_0, \ldots, b_n \in K, a_0, \ldots, a_n$ are pairwise different \Rightarrow

$$\exists ! p(x) \in K[x]_{\leq n} : \ p(a_i) = b_i \ \forall i.$$

Proof. $f: K[x]_{\leq n} \to K^{n+1}, f: p(x) \mapsto \begin{bmatrix} p(a_0) \\ \vdots \\ p(a_n) \end{bmatrix}$ is a linear map. Ker f = 0, since if

 $p(x) \in \operatorname{Ker} f \Rightarrow p(a_0) = \cdots = p(a_n) = 0 \Rightarrow p(x) = (x - a_0) \cdots (x - a_n)q(x), \text{ but deg } p \leq n,$ so p(x) = 0. dim Ker f + dim Im f = dim $K[x]_{\leq n} = n + 1$ implies dim Im f = n + 1, that is, fis surjective, and by Ker f = 0 it is also injective, consequently, f is an isomorphism. This means that for any $\mathbf{b} = \begin{bmatrix} b_0 \\ \vdots \\ b \end{bmatrix}$ there is exactly one $p(x) \in K[x]_{\leq n}$ such that $f(p(x)) = \mathbf{b}$.

Newton's method of interpolation (see also the Lagrange polynomials)

For the given $a_0, \ldots, a_n, b_0, \ldots, b_n$ let $p_i(x) \in K[x]_{\leq i}$ be an interpolating polynomial on a_0, \ldots, a_i . Clearly, $p_0(x) \equiv b_0$. If p_i is given, then

$$p_{i+1}(x) = p_i(x) + A \cdot (x - a_0) \cdots (x - a_i)$$

has the same values up to a_i for any $A \in K$, and $\deg p_{i+1}(x) \leq i+1$. Furthermore, A can be chosen so that $p_{i+1}(a_{i+1}) = b_{i+1}$ (if we substitute a_{i+1} , the coefficient of A is not 0, since all the a_j 's are different). So in the end we find a suitable $p_n(x)$.

Remark: Using Newton's method, it is easy to improve an interpolation by adding new points, i.e. measuring the value of the function which we wish to approximate by a polynomial at a few more places.

Shamir's secret sharing

We want to share a secret between n people (let the secret be coded by a natural number c) so that any k of the n people together can find out the secret information, but no k-1 of them could get closer to the secret if they share their bit of information among them.

Solution: Let p > c be a prime, $q(x) \in \mathbb{F}_p[x]_{\langle k}$, such that q(0) = c (that is, c is the constant term). The *i*.'th person is given the value $q(i) \in \mathbb{F}_p$ (i = 1, ..., n). Then k people together know k values of the polynomial, so by the interpolation theorem they can determine the polynomial and then also its constant term. But if someone knows only k - 1 values of the polynomial, then q(0) can still be anything: we can still find such an interpolating polynomial of degree less than k.

Question: Why do we need a polynomial over a finite field \mathbb{F}_p ? Why do not we choose an integral polynomial? Because in that case it is not true that with given k - 1 values, q(0) can be anything. It is possible that, though we find an interpolating polynomial over \mathbb{Q} , the coefficients of that polynomial are not integers.