
Applied algebra Eigenvalues, eigenvectors 2020, Fall semester

Eigenvalues, eigenvectors, diagonalization

Def. v ∈ VK is an eigenvector of the linear transformation f : V → V if v 6= 0, and
there is a scalar λ ∈ K such that f(v) = λv, that is, f(v) is parallel to v (including the
case when f(v) = 0).
Here λ is the eigenvalue corresponding to v.
The spectrum of f is the set of eigenvalues of f .
The eigenspace corresponding to the eigenvalue λ is Vλ = {v ∈ V | f(v) = λv } ≤ V ,
which consists of 0 and the eigenvectors for λ.

Example: The eigenvectors of an orthogonal projection onto a plane containing the origin
are the nonzero vectors of the plane (with eigenvalue 1), and the nonzero vectors orthogonal
to the plane (with eigenvalue 0).
In other words, the plane itself is the eigenspace for 1, and the line through the origin
which is perpendicular to the plane is the eigenspace for 0.

Def. The eigenvectors, eigenvalues and the spectrum of a matrix A are those of the
linear transformation x 7→ Ax.

Diagonalization (spectral decomposition)

A ∈ Kn×n, f : Kn → Kn, f : x 7→ Ax. If ∃ a basis B = {b1, . . . ,bn } consisting of
eigenvectors of f with eigenvalues λ1, . . . , λn then

[f ]B =













λ1 0 0 . . . 0
0 λ2 0 . . . 0

0 0
. . . . . . 0

0 0 . . . λn−1 0
0 0 0 . . . λn













= D

is a diagonal matrix.
With the transition matrix P = [b1 . . .bn] we have D = P−1AP , that is, A = PDP−1.
The latter is the spectral decomposition of A.

Def. A ∈ Kn×n is diagonalizable if there exists an invertible matrix P such that P−1AP

is diagonal (in other words, A is similar to a diagonal matrix), i.e. ∃ a basis in Kn consisting
of eigenvectors of A.

Powers of diagonalizable matrices

If A = PDP−1, then Ak = (PDP−1)(PDP−1) · · · (PDP−1) = PDkP−1, and we obtain
the kth power of a diagonal matrix simply by taking the kth powers of the diagonal
elements.

Calculating eigenvalues and eigenvectors

∃v 6= 0 : Av = λv ⇔

∃v 6= 0 : (A− λI)v = 0 ⇔

|A− λI| = 0
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Characteristic polynomial

Def. The characteristic polynomial of the matrix A is

kA(x) = |A− xI| =
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a11 − x a12 . . . a1n
a21 a22 − x . . . a2n

. . .

an1 an2 . . . ann − x
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Then the eigenvalues of A are exactly the roots of the characteristic polynomial kA(x).

Exercises: Which of the following matrices are diagonalizable over R or C?

A =

[

1 2
0 2

]

|A− xI| =

∣

∣

∣

∣

1− x 2
0 2− x

∣

∣

∣

∣

= (x− 1)(x− 2)
eigenvalues: λ = 1, 2
∃ eigenvector for each„
they are indep. ⇒
they form a basis ⇒
A is diag.-able

B =

[

0 −1
1 0

]

|B − xI| = x2 + 1
no real root ⇒
B is not diag.-able over R

(but diag.-able over C)

C =

[

1 1
0 1

]

|C − xI| = (x− 1)2

eigenvalue: λ = 1
(C − 1 · I)v = 0, v =?
[

0 1 | 0
0 0 | 0

]

⇒ v =

[

t

0

]

6 ∃ two indep. eigenvectors ⇒
C is not diagonalizable
(neither over R nor over C)

Proposition. If kA(x) can be written as the product of linear polynomials, i.e. kA(x) =
(−1)n(x− λ1)(x− λ2) · · · (x− λn), where λ1, . . . , λn are the eigenvalues of A, then

λ1 + . . .+ λn = trA = a11 + a22 + . . .+ ann

(trA is called the trace of A), and

λ1 · · ·λn = |A|.

Proof. In the summands of the determinant |A − xI|, xn−1 can only appear when we
multiply the elements of the diagonal, and in that product the coefficient of xn−1 is
(−1)n−1(a11 + . . . + ann), which is the same as the coefficient of xn−1 in the factoriza-
tion of kA(x), and that is (−1)n(−λ1 − λ2 − . . .− λn) = (−1)n−1(λ1 + . . .+ λn).

The constant term of the polynomial kA(x) is kA(0) = |A− 0I| = |A|, while the constant
term in the factored form is (−1)n(−λ1) · · · (−λn) =

∏

λi.

Def. For A ∈ Kn×n and p(x) = cmxm + . . . + c1x + c0 ∈ K[x], we define p(A) :=
cmAm + . . .+ c1A+ c0I.

Cayley–Hamilton theorem. kA(A) = 0.

Example: For A =

[

1 2
0 2

]

, kA(x) = (x− 1)(x− 2), and

(A− I)(A− 2I) =

[

0 2
0 1

] [

−1 2
0 0

]

=

[

0 0
0 0

]


