Euclidean spaces and their transformations

Scalar product (dot product) in \mathbb{R}^{3}

$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}| \cdot|\mathbf{b}| \cdot \cos \alpha$, where α is the angle of the two vectors.
With coordinates: if $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ then $\mathbf{a b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.
Exercise Consider the unit cube $0 \leq x, y, z \leq 1$, and let $\mathbf{a}=(1,0,1)$ and $\mathbf{b}=(0,1,1)$ be the diagonal vectors of two faces of the cube starting from the origin. What is the angle of \mathbf{a} and \mathbf{b} ?
Solution: $\mathbf{a b}=0+0+1=1,|\mathbf{a}|=|\mathbf{b}|=\sqrt{2} \Rightarrow \cos \alpha=\frac{1}{2} \Rightarrow \alpha=60^{\circ}$. Indeed, the corners $(0,0,0),(1,0,1)$ and $(0,1,1)$ form an equilateral triangle, since the third side is also the diagonal of a face of the cube.

Properties:

$-\mathbf{a}$ and \mathbf{b} are orthogonal (perpendicular) $\Leftrightarrow \mathbf{a b}=0$. Notation: $\mathbf{a} \perp \mathbf{b}$.
$-\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$, so $|\mathbf{a}|=\sqrt{\mathbf{a} \cdot \mathbf{a}}$

- Projection of a vector \mathbf{x} onto a vector $\mathbf{a} \neq \mathbf{0}: \quad \mathbf{x}^{\prime}=\frac{\mathbf{a} \cdot \mathbf{x}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a}=\frac{\mathbf{a x}}{|\mathbf{a}|^{2}} \mathbf{a}$,
since $\frac{\mathbf{a x}}{|\mathbf{a}|^{2}} \mathbf{a}=\frac{|\mathbf{a}| \cdot|\mathbf{x}| \cos \alpha}{|\mathbf{a}|^{2}} \mathbf{a}=|\mathbf{x}| \cos \alpha \cdot \frac{\mathbf{a}}{|\mathbf{a}|}$, where $|\mathbf{x}| \cos \alpha$ is the length of the projection (with + or $-\operatorname{sign}$) and $\frac{\mathbf{a}}{|\mathbf{a}|}$ is the unit vector pointing in the same direction as \mathbf{a}.
Scalar product in \mathbb{R}^{n} and in \mathbb{C}^{n}
We consider the elements of \mathbb{R}^{n} and \mathbb{C}^{n} as column vectors.
Def.: For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, the (standard) scalar product of \mathbf{x} and \mathbf{y} is $\langle\mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{T} \mathbf{y}=$ $\sum_{j=1}^{n} x_{j} y_{j}$ (the 1×1 matrix taken as a scalar).
For $\mathbf{x} \in \mathbb{R}^{n}$, the vector \mathbf{x}^{T} is the transposed vector of \mathbf{x}, which is the row vector $\left[x_{1} \ldots x_{n}\right]$.
For $\mathbf{x} \in \mathbb{C}^{n}$, the vector $\mathbf{x}^{*}=\overline{\mathbf{x}^{T}}=\left[\overline{x_{1}}, \ldots, \overline{x_{n}}\right]$ is the adjoint vector of \mathbf{x}, which is the same as \mathbf{x}^{T} if all coordinates of \mathbf{x} are real.
For $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$, the (standard) scalar product of \mathbf{x} and \mathbf{y} is $\langle\mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{*} \mathbf{y}=\sum_{j=1}^{n} \overline{x_{j}} y_{j}$.
\mathbb{R}^{n} and \mathbb{C}^{n} with this scalar product are called real or complex Euclidean spaces.
We say that \mathbf{x} and \mathbf{y} are orthogonal to each other in \mathbb{R}^{n} or \mathbb{C}^{n} if $\langle\mathbf{x}, \mathbf{y}\rangle=0$.
Def.: For a matrix $A \in \mathbb{C}^{m \times n}$ the adjoint matrix $A^{*}=\overline{A^{T}}$ is the $n \times m$ matrix whose (i, j) element is $\overline{a_{j i}}$.
Example: For $A=\left[\begin{array}{ccc}1 & 1-i & i \\ 0 & 2+i & 5\end{array}\right]$, the adjoint matrix is $A^{*}=\left[\begin{array}{cc}1 & 0 \\ 1+i & 2-i \\ -i & 5\end{array}\right]$.
Properties of the scalar product

$$
\begin{aligned}
& \text { in } \mathbb{R}^{n} \quad \text { in } \mathbb{C}^{n} \\
& \left\langle\mathbf{x}+\mathbf{x}^{\prime}, \mathbf{y}\right\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\left\langle\mathbf{x}^{\prime}, \mathbf{y}\right\rangle \\
& \left\langle\mathbf{x}, \mathbf{y}+\mathbf{y}^{\prime}\right\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\left\langle\mathbf{x}, \mathbf{y}^{\prime}\right\rangle \\
& \langle\mathbf{x}, \lambda \mathbf{y}\rangle=\lambda\langle\mathbf{x}, \mathbf{y}\rangle \\
& \langle\lambda \mathbf{x}, \mathbf{y}\rangle=\lambda\langle\mathbf{x}, \mathbf{y}\rangle \quad\langle\lambda \mathbf{x}, \mathbf{y}\rangle=\bar{\lambda}\langle\mathbf{x}, \mathbf{y}\rangle \\
& \begin{aligned}
\langle\mathbf{y}, \mathbf{x}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle \\
\langle\mathbf{x}, \mathbf{x}\rangle \geq 0 \text { real, and }>0 \text { if } \mathbf{x} \neq 0
\end{aligned} \\
& |\mathbf{x}|:=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle} \\
& \mathbf{x} \perp \mathbf{y}: \Leftrightarrow\langle\mathbf{x}, \mathbf{y}\rangle=0
\end{aligned}
$$

These properties mean that the scalar product in \mathbb{R}^{n} is a symmetric bilinear form, the scalar product in \mathbb{C}^{n} is an Hermitian form, and both are positive definite: $\langle\mathbf{x}, \mathbf{x}\rangle>0$ if $\mathrm{x} \neq \mathbf{0}$.
It can be proved (see Gram-Schmidt orthogonalization) that any subspace of a Euclidean space has an orthonormal basis, that is, a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{m}\right\}$ such that $\left|b_{i}\right|=1$ for every i and $\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}\right\rangle=0$ for every $i \neq j$.

Orthogonal projection on a vector

Proposition: Let $\mathbf{a} \in K^{n}$, where $K=\mathbb{R}$ or $K=\mathbb{C}$, and assume that $\mathbf{a} \neq \mathbf{0}$. Consider the map

$$
\mathrm{x} \mapsto \mathrm{x}^{\prime}=\frac{\mathbf{a}^{*} \mathbf{x}}{\mathbf{a}^{*} \mathbf{a}} \mathbf{a}=\frac{\langle\mathbf{a}, \mathbf{x}\rangle}{|\mathbf{a}|^{2}} \mathbf{a}
$$

Then $\mathbf{x}^{\prime} \| \mathbf{a}$ and $\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \perp \mathbf{a}$, which means that \mathbf{x}^{\prime} is the orthogonal projection of \mathbf{x} to \mathbf{a}.
Proof: \mathbf{x}^{\prime} is a scalar multiple of \mathbf{a}, so it is parallel to \mathbf{a}.
$\left\langle\mathbf{a}, \mathbf{x}-\mathbf{x}^{\prime}\right\rangle=\langle\mathbf{a}, \mathbf{x}\rangle-\left\langle\mathbf{a}, \mathbf{x}^{\prime}\right\rangle=\langle\mathbf{a}, \mathbf{x}\rangle-\left\langle\mathbf{a}, \frac{\langle\mathbf{a}, \mathbf{x}\rangle}{|\mathbf{a}|^{2}} \mathbf{a}\right\rangle=\langle\mathbf{a}, \mathbf{x}\rangle-\frac{\langle\mathbf{a}, \mathbf{x}\rangle}{|\mathbf{a}|^{2}}\langle\mathbf{a}, \mathbf{a}\rangle=\langle\mathbf{a}, \mathbf{x}\rangle-\langle\mathbf{a}, \mathbf{x}\rangle=0$
Proposition: The orthogonal projection on a vector $\mathbf{a} \neq 0$ is a linear transformation in \mathbb{R}^{n} or in \mathbb{C}^{n}, and its matrix is

$$
\frac{1}{\mathbf{a}^{*} \mathbf{a}} \mathbf{a a}^{*}=\frac{1}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*}
$$

Proof: $\frac{1}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*} \cdot \mathbf{x}=\frac{1}{|\mathbf{a}|^{2}} \mathbf{a}\left(\mathbf{a}^{*} \mathbf{x}\right)=\frac{1}{|\mathbf{a}|^{2}}\left(\mathbf{a}^{*} \mathbf{x}\right) \mathbf{a}=\mathbf{x}^{\prime}$, since the multiplication from the right by the 1×1 matrix $\mathbf{a}^{*} \mathbf{x}$ is the same as the multiplication from the left by $\mathbf{a}^{*} \mathbf{x}$ as a scalar.
Exercise: Find the matrix of the orthogonal projection onto the vector $\mathbf{a}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \in \mathbb{R}^{2}$.
Solution: $A=\frac{1}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*}=\frac{1}{5}\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{ll}1 & 2\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]=\left[\begin{array}{ll}1 / 5 & 2 / 5 \\ 2 / 5 & 4 / 5\end{array}\right]$.

Orthogonal projection and reflection to a hyperplane

For a vector $\mathbf{a} \neq \mathbf{0}$ in K^{n} (where $K=\mathbb{R}$ or \mathbb{C}), the hyperplane with normal vector \mathbf{a} is $H(\mathbf{a})=\left\{\mathbf{x} \in K^{n} \mid\langle\mathbf{a}, \mathbf{x}\rangle=0\right\}$: the plane formed by the endpoints of the vectors perpendicular to the vector $\mathbf{a} . ~ H(\mathbf{a})$ is an $(n-1)$-dimensional subspace in K^{n}. For instance, hyperplanes in \mathbb{R}^{2} are the lines going through the origin, in \mathbb{R}^{3} the planes going through the origin.
The orthogonal projection of \mathbf{x} on $H(\mathbf{a})$ is $\mathbf{x}-\mathbf{x}^{\prime}$, where \mathbf{x}^{\prime} is the orthogonal projection of \mathbf{x} on \mathbf{a}. So the matrix of this transformation is

$$
I-\frac{1}{|\mathbf{a}|^{2}} \mathbf{a a}^{*}
$$

The reflection of \mathbf{x} on $H(\mathbf{a})$ is $\mathbf{x}-2 \mathbf{x}^{\prime}$, where \mathbf{x}^{\prime} is the orthogonal projection of \mathbf{x} on \mathbf{a}. So the matrix of this transformation is

$$
I-\frac{2}{|\mathbf{a}|^{2}} \mathbf{a a}^{*}
$$

Exercise: Find the standard matrix of the reflection of \mathbb{R}^{3} to the plane $x+y-2 z=0$.
Solution: The normal vector is $(1,1,-2)$, so $\mathbf{a}=\left[\begin{array}{lll}1 & 1 & -2\end{array}\right]^{T},|\mathbf{a}|^{2}=6$, and

$$
A=I-\frac{2}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*}=I-\frac{1}{3}\left[\begin{array}{rrr}
1 & 1 & -2 \\
1 & 1 & -2 \\
-2 & -2 & 4
\end{array}\right]=\left[\begin{array}{rrr}
2 / 3 & -1 / 3 & 2 / 3 \\
-1 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & 2 / 3 & -1 / 3
\end{array}\right]
$$

Unitary, self-adjoint and normal matrices

Properties of the adjoint of a matrix:
$(A+B)^{*}=A^{*}+B^{*}$
$(A B)^{*}=B^{*} A^{*}$
$(c A)^{*}=\bar{c} A^{*}$
$\left(A^{*}\right)^{*}=A$
$A^{*}=A^{T}$ if $A \in \mathbb{R}^{m \times n}$
Def.: Let $A \in \mathbb{C}^{n \times n}$.
A is unitary if $A^{*}=A^{-1}$, that is, if $A^{*} A=A A^{*}=I$.
A is self-adjoint if $A^{*}=A$.
A is normal if $A^{*} A=A A^{*}$. Clearly, any unitary or self-adjoint matrix is also normal.
If $A \in \mathbb{R}^{n \times n}$ then unitary is also called orthogonal and self-adjoint is also called symmetric, since in this case $A^{T}=A$ means that the matrix is symmetric to its main diagonal.
Proposition: The following are equivalent for $A \in K^{n \times n}$ with $K=\mathbb{R}$ or \mathbb{C} :
(i) A is unitary;
(ii) the columns of A form an orthonormal basis in K^{n};
(iii) the rows of A form an orthonormal basis in K^{n};
(iv) the transformation $\mathbf{x} \mapsto A \mathbf{x}$ maps an orthonormal basis to an orthonormal basis.

Exercise: Consider the matrices
$A=\left[\begin{array}{rr}2 & 3 \\ 3 & -1\end{array}\right], B=\left[\begin{array}{ll}i & i \\ i & 1\end{array}\right], C=\left[\begin{array}{rr}2 & 3 \\ -3 & 2\end{array}\right], D=\left[\begin{array}{cc}1 & 2+i \\ 2-i & 3\end{array}\right], E=\left[\begin{array}{rr}3 / 5 & -4 / 5 \\ 4 / 5 & 3 / 5\end{array}\right]$.
Which of them are unitary, self-adjoint or normal?
Solution: A is self-adjoint (real symmetric), D is complex self-adjoint, E is unitary (real orthogonal), so they are all normal. B is not even normal but C is normal: $C^{*} C=C C^{*}=$ $\left[\begin{array}{rr}13 & 0 \\ 0 & 13\end{array}\right]$.
Examples: 1. Every real diagonal matrix is self-adjoint.
2. If $A \in \mathbb{R}^{n \times n}$ is skew-symmetric: $A^{T}=-A$, then A is normal.
3. If A is the matrix of an orthogonal projection or reflection on a hyperplane then it is self-adjoint: $\left(\mathbf{a a}^{*}\right)^{*}=\mathbf{a} \mathbf{a}^{*}$, so $\left(I-\frac{1}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*}\right)^{*}=I-\frac{1}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*}$ and $\left(I-\frac{2}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*}\right)^{*}=I-\frac{2}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*}$.
4. If A is the matrix of a reflection on a hyperplane, then A is unitary:

$$
\left(I-\frac{2}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*}\right)^{*}\left(I-\frac{2}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*}\right)=\left(I-\frac{2}{|\mathbf{a}|^{2}} \mathbf{a a}^{*}\right)^{2}=I-\frac{4}{|\mathbf{a}|^{2}} \mathbf{a} \mathbf{a}^{*}+\frac{4}{|\mathbf{a}|^{4}}\left(\mathbf{a a}^{*}\right)^{2}
$$

and here $\left(\mathbf{a a}^{*}\right)^{2}=\mathbf{a}\left(\mathbf{a}^{*} \mathbf{a}\right) \mathbf{a}^{*}=|\mathbf{a}|^{2} \mathbf{a} \mathbf{a}^{*}$, so $A A^{*}=A^{2}=I$.
Note that the eigenvalues of a projection are 0 and 1 , the eigenvalues of a reflection are 1 and -1

Theorem

(1) If $A \in \mathbb{C}^{n \times n}$ is unitary, then $|\lambda|=1$ for every eigenvalue λ of A.
(2) If $A \in \mathbb{C}^{n \times n}$ is self-adjoint, then every eigenvalue of A is real.

Proof: Suppose that \mathbf{v} is an eigenvector with eigenvalue $\lambda: A \mathbf{v}=\lambda \mathbf{v}$.
(1): $(A \mathbf{v})^{*}(A \mathbf{v})=\mathbf{v}^{*} A^{*} A \mathbf{v}=\mathbf{v}^{*} I \mathbf{v}=|\mathbf{v}|^{2}$, on the other hand, $(A \mathbf{v})^{*}(A \mathbf{v})=(\lambda \mathbf{v})^{*}(\lambda \mathbf{v})=$ $\bar{\lambda} \lambda \mathbf{v}^{*} \mathbf{v}=|\lambda|^{2}|\mathbf{v}|^{2}$, so $|\lambda|^{2}|\mathbf{v}|^{2}=|\mathbf{v}|^{2}$, and since $\mathbf{v} \neq 0$, this implies $|\lambda|^{2}=1$, so $|\lambda|=1$.
(2): $\mathbf{v}^{*}(A \mathbf{v})=\left(\mathbf{v}^{*} A\right) \mathbf{v}=\left(\mathbf{v}^{*} A^{*}\right) \mathbf{v}=(A \mathbf{v})^{*} \mathbf{v}=(\lambda \mathbf{v})^{*} \mathbf{v}=\bar{\lambda} \mathbf{v}^{*} \mathbf{v}=\bar{\lambda}|\mathbf{v}|^{2}$, on the other hand, $\mathbf{v}^{*}(A \mathbf{v})=\mathbf{v}^{*}(\lambda \mathbf{v})=\lambda|\mathbf{v}|^{2}$, so $\bar{\lambda}|\mathbf{v}|^{2}=\lambda|\mathbf{v}|^{2}$, and since $\mathbf{v} \neq 0$, this implies that $\bar{\lambda}=\lambda$, that is, $\lambda \in \mathbb{R}$.

Theorem:

If $A \in \mathbb{C}^{n \times n}$ is unitary, self-adjoint or normal, and $U \in \mathbb{C}^{n \times n}$ is unitary, then $U^{-1} A U$ is also unitary, self-adjoint or normal, respectively.
Proof: Let's notice first that $\left(U^{-1} A U\right)^{*}=\left(U^{*} A U\right)^{*}=U^{*} A^{*} U$.
If $A^{*}=A$, then $\left(U^{-1} A U\right)^{*}=U^{*} A^{*} U=U^{-1} A U$.
If $A^{*}=A^{-1}$, then $\left(U^{-1} A U\right)^{*}=U^{*} A^{*} U=U^{-1} A^{-1} U=\left(U^{-1} A U\right)^{-1}$.
Finally, $\left(U^{-1} A U\right)\left(U^{-1} A U\right)^{*}=\left(U^{-1} A U\right)\left(U^{-1} A^{*} U\right)=U^{-1} A A^{*} U$, and similary,
$\left(U^{-1} A U\right)^{*}\left(U^{-1} A U\right)=U^{-1} A^{*} A U$, so if $A A^{*}=A^{*} A$, then $\left(U^{-1} A U\right)\left(U^{-1} A U\right)^{*}=$ $\left(U^{-1} A U\right)^{*}\left(U^{-1} A U\right)$.

Spectral theorem

Theorem The following are equivalent for a matrix $A \in \mathbb{C}^{n \times n}$.
(i) A is normal.
(ii) There is a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that $U^{-1} A U=U^{*} A U$ is diagonal.
(iii) There is an orthonormal basis in \mathbb{C}^{n} consisting of eigenvectors of A.

The following two theorems are special cases of the spectral theorem.
Theorem: The following are equivalent for a matrix $A \in \mathbb{C}^{n \times n}$.
(i) A is self-adjoint.
(ii) There is a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that $U^{-1} A U=U^{*} A U$ is real diagonal.
(iii) Every eigenvalue of A is real and there is an orthonormal basis in \mathbb{C}^{n} consisting of eigenvectors of A.
And its version for real matrices:
Theorem: The following are equivalent for a matrix $A \in \mathbb{R}^{n \times n}$.
(i) A is symmetric.
(ii) There is an orthogonal matrix $U \in \mathbb{R}^{n \times n}$ such that $U^{-1} A U=U^{*} A U$ is (real) diagonal.
(iii) There is an orthonormal basis in \mathbb{R}^{n} consisting of eigenvectors of A.

Examples:

1. If A is the standard matrix of an orthogonal projection to a hyperplane, then it has an orthonormal basis of eigenvectors (an orthonormal basis of the hyperplane together with the normal vector of length 1), and the eigenvalues are 0 and 1 , so A must be symmetric.
2. If A is the standard matrix of a projection to a plane in \mathbb{R}^{3} along a vector which is not perpendicular to the given plane, then the eigenvector for 0 is not perpendicular to the eigenspace for 1 , so the matrix cannot be symmetric.
3. If f is the rotation of \mathbb{R}^{2} about the origin by the angle α, then its standard matrix is orthogonal: the orthonormal basis $\{\mathbf{i}, \mathbf{j}\}$ is mapped to an orthonormal basis. (The matrix is $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$.)
