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Orthogonalization

Def. Let K = R or C, V = Kn, W ≤ V . Then

W⊥ := {v ∈ V |v⊥w ∀w ∈ W } ≤ V.

Proposition
Every vector v ∈ V can be written uniquely as v = w + u, where w ∈ W and u ∈ W⊥.
Proof. Suppose dimW = k. Let the columns of the matrix A ∈ Kn×k form a basis of W .
Then v ∈ W⊥ ⇔ A∗v = 0,
so W⊥ is the kernel of the linear map f : Kn → Kk, v 7→ A∗v.
Since rank f = rankA∗ = k ⇒ dimW⊥ = dimKer f = n− rank f = n− k.
On the other hand, W ∩W⊥ = 0 := {0 } because if w ∈ W ∩W⊥, then 〈w,w 〉 = 0 ⇒
w = 0. So the union of a basis of W and a basis of W⊥ is independent, and has n elements
⇒ it is a basis.
So every vector can be written in a form w + u, w ∈ W , u ∈ W⊥.
This decomposition is unique: if w1 + u1 = w2 + u2 are two such decompositions then
w1 −w2 = u2 − u1 ∈ W ∩W⊥ = 0, so w1 = w2 and u1 = u2.

Def. Let W ≤ V , v ∈ V .
v′ is the orthogonal projection of v on W if v′ ∈ W and v − v′ ∈ W⊥.

Corollary. Every vector has a unique orthogonal projection on W .

Proposition
The closest vector of W to v ∈ V is the orthogonal projection of v to W .
(Closest: |v − v′| = min { |v −w| |w ∈ W }.)
Proof. Spse v = v′ + v′′, where v′ ∈ W and v′′ ∈ W⊥.
If w ∈ W , then

|v −w|2 = |(v′ −w) + v′′|2 = 〈(v′ −w) + v′′, (v′ −w) + v′′ 〉 = |v′ −w|2 + |v′′|2,

since v′ −w ∈ W ⇒ (v′ −w)⊥v′′. But this is ≥ |v′′|2 = |v − v′|2.
Proposition
Suppose {b1, . . . ,bk } is an orthogonal basis in W ≤ V = Kn (i.e. 〈bi,bj 〉 = 0 if i 6= j)

For any v ∈ V , the projection of v to W is

v′ =
∑

i

〈bi,v 〉
|bi|2

bi.

Proof. v′ ∈ span {b1, . . . ,bk } = W . On the other hand

〈bj ,v
′ 〉 =

∑

i

〈bi,v 〉
|bi|2

〈bj ,bi 〉 = 〈bj ,v 〉,

thus 〈bj , v − v′ 〉 = 0 for every j, so v − v′ ∈ W⊥.
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Exercise. Show that {b1,b2 } is an orthog. basis of W = span {b1,b2 }, where b1 =
(1, 2, 1) and b2 = (2,−1, 0). What is the orthog. projection of v = (1, 1, 1) on W?

Solution. 〈(1, 2, 1), (2,−1, 0) 〉= 0.
v′ = 4

6(1, 2, 1) +
1
5(2,−1, 0) = 1

15(16, 17, 10).

Theorem (Gram–Schmidt orthogonalization)

Let b1, . . . ,bk be an independent system in V = Kn. Then we can find an orthogonal
system c1, . . . , ck such that span {b1, . . . ,bi } = span { c1, . . . , ci } ∀i ∈ { 1, . . . , k },
We can obtain ci as
c1 = b1 and

ci = bi −
i−1
∑

j=1

〈 cj ,bi 〉
|cj|2

cj for i ≥ 2.

Proof. By induction. Suppose we already constructed c1, . . . , ci−1, which satisfy the

conditions of the theorem. Then b′
i =

i−1
∑

j=1

〈 cj ,bi 〉
|cj |2

cj is the orthog. proj. of bi on Wi−1 =

span { c1, . . . , ci−1 }, so ci = bi − b′
i ∈ W⊥ ⇒ ci⊥ cj ∀i < j.

Furthermore,
span { c1, . . . , ci } = span { c1, . . . , ci−1,bi − b′

i } = span { c1, . . . , ci−1,bi }, since b′
i ∈

Wi−1, and here c1, . . . , ci−1 can be replaced by b1, . . . ,bi−1 by the induction hypothesis.

Corollary. Every W ≤ V = Kn has an orthonormal basis.

Proof. Take an arbitrary basis {b1, . . . ,bk } in W . Then the set { c1, . . . , ck } obtained
above is also independent, since they span the same k-dimensional subspace.
⇒ c1

|c1|
, . . . , ck

|ck|
form an orthonormal basis of W .

Exercise. Orthogonalize the system b1 = (1, 1, 1, 1), b2 = (3,−1, 3,−1), b3 = (6, 2, 2,−2)
in R

4.

Solution. c1 = b1 = (1, 1, 1, 1).

c2 = b2 − 〈 c1,b2 〉
|c1|2

c1 = (3,−1, 3,−1)− 4
4 (1, 1, 1, 1) = (2,−2, 2,−2), but we may substitute

this with the parallel c̃2 = (1,−1, 1,−1).
c3 = (6, 2, 2,−2)− 8

4 (1, 1, 1, 1)− 8
4 (1,−1, 1,−1) = (2, 2,−2,−2), which can be substitued

with the parallel c̃3 := (1, 1,−1,−1).
So we got the orthogonal basis {(1, 1, 1, 1), (1,−1, 1,−1), (1, 1,−1,−1) },
or the corresponding orthonormal basis
{ 1

2
(1, 1, 1, 1), 1

2
(1,−1, 1,−1), 1

2
(1, 1,−1,−1) } in W .

Exercise. Orthogonalize the vectors b1 = (0, 1, i) and b2 = (1,−i, 1 + i) in C
3.

Solution. c1 = b1 = (0, 1, i),

c2 = (1,−i, 1 + i)− −i+(−i)(1+i)
2 (0, 1, i) = (1,−i, 1+ i)−

(

0, 1−2i
2 , 2+i

2

)

=
(

1, −1
2 ,

i
2

)

| |
(2,−1, i) =: c̃2.
So the orthogonal system is c1 = (0, 1, i) and c̃2 = (2,−1, i).
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Best approximate solution of an inconsistent system of equations

Let A ∈ R
m×n, and suppose that Ax = b is inconsistent, that is, it has no solution.

Then a best approximate solution is x for which Ax = b′, where b′ is the orthog. proj.
of b on the column space of A. (The column space of A is {Ax |x ∈ R

n }, so b′ will be
the vector closest to b for which the system is consistent.)
This is called the method of least squares.

Def. For a system of equations Ax = b the normal equations are the ones given by
ATAx = ATb.

Theorem. For an inconsistent system of equations Ax = b a solution of the normal
equations is a best approximate solution.

Proof. Let W be the column space of A, that is, W = {Ax |x ∈ R
n } then W⊥ = {y ∈

R
n |ATy = 0 }.

Spse ATAx = ATb for some x. Then c := Ax ∈ W , and
AT (b− c) = ATb− ATAx = 0, so b− c ∈ W⊥.
So c is the orthog. proj. of b on W , i.e. x is a best approximate solution.

Exercise. Show that the system of equations given by following the augmented matrix is
inconsistent. Give a best approximate solution.





1 1 | 1
2 −1 | 1
4 1 | 0





Solution.

[A|b] =





1 1 | 1
2 −1 | 1
4 1 | 0



 7→





1 1 | 1
0 −3 | −1
0 −3 | −4



 7→





1 1 | 1
0 −3 | −1
0 0 | −3





gives a contradiction.

Multiply the augmented matrix with AT =

[

1 2 4
1 −1 1

]

from the left, and solve the

system of equations.

[

21 3 | 3
3 3 | 0

]

7→
[

1 1 | 0
0 −18 | 3

]

7→
[

1 0 | 1
6

0 1 | −1
6

]

⇒ x =

[

1
6

−1
6

]

For this x, Ax =
(

0, 12 ,
1
2

)T
is indeed the orthog. projection of (1, 1, 0) to the column space

of A.

QR decomposition

Def. Spse A ∈ R
m×n, r(A) = n (so m ≥ n, and the columns of A are linearly independent).

The (reduced) QR decomposition of A is
A = QR if

Q ∈ R
m×n is semiorthogonal, that is, QTQ = I, and

R ∈ R
n×n is an upper triangular matrix with positive diagonal elements.
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Calculating the QR decomposition, using Gram–Schmidt orthogonalization

Let b1, . . . ,bm be the columns of A,
c1, . . . , cm the orthog. basis obtained by the G–S method,
q1, . . . ,qm, where qi =

ci

|ci|
, the orthonormal basis.

Then ci = bi −
∑

j<i

αijcj,

bi = ci +
∑

j<i

αijcj = |ci|qi +
∑

βijqj , so

A = [b1| . . . |bm] = [q1| . . . |qm]R,
where the i’th column of R is (βi1, . . . , βi,i−1, |ci|, 0, . . . , 0)
⇒ R is an upper triangular matrix with positive diagonal elements (|ci|), and the columns
of Q = [q1| . . . ,qm] are orthonormal, so QTQ = In.

If we multiply the ci by scalars during the orthogonalization, make sure that these are
always positiv scalars. In this case the qi vectors are uniquely defined.

When we calculated Q, then we can obtain R from it:
A = QR ⇒ QTA = QTQR = IR = R, so we get R as QTA.

Exercise Calculate the QR decomposition of the matrix

A =







1 3 6
1 −1 2
1 3 2
1 −1 −2







Solution. We orthogonalized earlier these column vectors. The orthonormal system we
obtained gives

Q =
1

2







1 1 1
1 −1 1
1 1 −1
1 −1 −1






⇒ R = QTA =





2 2 4
0 4 4
0 0 4





Application to systems of equations

If Ax = b is an inconsistent system, and A = QR is a reduced QR decomposition, then

ATAx =ATb ⇔
RTQTQRx =RTQTb ⇔ (since R is invertible, and QTQ = I)

Rx =QTb,

and this can be solved easily by substitutions, since R is triangular.

Exercise With the previous A, find the best approximate solution of
Ax = [ 8 2 2 0 ]

T
.

Solution.

b =







8
2
2
0






, QTb =





6
4
4



 , [R|QTb] =





2 2 4 | 6
0 4 4 | 4
0 0 4 | 4




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So for the best approximate solution x, we have x3 = 1, then from the second row,
4x2 + 4 = 4 ⇒ x2 = 0, and from the first row, 2x1 + 0 + 4 = 6 ⇒ x1 = 1, that is,
x = (1, 0, 1).
With this x we got Ax = (7, 3, 3,−1) to approximate b = (8, 2, 2, 0).

Orthogonal complement

If we are only given a generating set of W ≤ V = Kn, and not a basis, we can still use
GS’s method for finding an orthogonal basis of W, only we have to drop the zero vectors
obtained in the process.

Lemma. If { c1, . . . , ck } is an orthogonal set of nonzero vectors, then it is linearly inde-
pendent.
Proof. If

∑

λici = 0, then for every j, 0 = 〈 cj , 0 〉 =
∑

λi 〈 cj , ci 〉 = λj |cj |2, but cj 6= 0,
so λj = 0 for every j. ⊓⊔

Now let’s see how we get an orthogonal basis from any generating set {v1, . . . ,vm } of
W ≤ Kn.
Spse { c1, . . . , ck } is already an orthogonal basis of Wℓ = span {v1, . . . ,vℓ } for some
1 ≤ ℓ < m. If the next vector, vℓ+1 is not in Wℓ, then the orthog. projection v′

ℓ+1 of vℓ+1

is not vℓ+1, so ck+1 = vℓ+1 − v′
ℓ+1 6= 0 will do for the next orthogonal element, otherwise

the projection is vℓ+1 itself, and we would get ck+1 = 0, which we discard.
In the end we get a generating set of nonzero orthogonal vectors, which is a basis of W by
the lemma.

We can also use this method for finding an orthogonal basis of W⊥:
If {v1, . . . ,vm } is a generating set of W , complete it to a generating set of V (to make sure
that it spans Kn, we may simply add e1, . . . , en). Then apply GS’s method to this larger
system of vectors v1, . . . ,vm, e1, . . . , en (or whatever we chose, taking the generating set
of W first). The nonzero orthogonal vectors c1, . . .ck, that we got when we just finished
processing v1, . . . ,vm will give a basis of W , the nonzero orthog. vectors obtained after
this will give a basis of W⊥. We may stop when the number of nonzero orthog. vectors
reached n because then they already generate Kn.

Exercise. Consider the vectors v1 = (1, 0,−1, 1), v2 = (1, 0, 0, 2), v3 = (0, 0, 1, 1) in R
4.

Give an orthogonal basis of W = span {v1,v2,v3 } and of W⊥. (See Problem 24 in the
excercise sheet.)

Solution. Complete the set to v1,v2,v3, e1, e2, e3, e4, that is,

(1, 0,−1, 1), (1, 0, 0, 2), (0, 0, 1, 1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).

We get c1 = (1, 0,−1, 1), c2 = (0, 0, 1, 1), and we discard c3 = 0, so an orthog-
onal basis of W is {(1, 0,−1, 1), (0, 0, 1, 1) }. continuing with the ei vectors we get
c3 = (2, 0, 1,−1) c4 = (0, 1, 0, 0), and this completes the basis, so an orthogonal basis
of W⊥ is {(2, 0, 1,−1), (0, 1, 0, 0) }.

The reduced and the full QR decomposition

Def. A = Q̂R̂ is a full QR decomposition of A ∈ R
m×n if Q ∈ Rm×m is orthogonal, and

R ∈ R
m×n is upper triangular with positive elements in the main diagonal.
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A reduced decompostion A = QR can be turned to a full decomposition by completing the
columns of Q to an orthonormal basis of Rm (using GS’s method as above), and adding
extra 0 rows to R: Q̂ = [Q|Q1], and R̂ =

[

R
0

]

. Conversely, every full decomposition can

be reduced by taking only the first n columns of Q̂ as Q, and the first n rows of R̂ (that
is, deleting the zero rows).

Example From an earlier exercise the reduced and full QR decomposition is

A =







1 3 6
1 −1 2
1 3 2
1 −1 −2






=
1

2







1 1 1
1 −1 1
1 1 −1
1 −1 −1











2 2 4
0 4 4
0 0 4





=
1

2







1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1













2 2 4
0 4 4
0 0 4
0 0 0







Though the reduced QR decomposition is uniqe, the full decomposition is clearly not:
there are several ways to complete and orthonormal sysem to an orthonormal basis (for
example, we can take the negative of any of the new vectors).

Householder reflections

We have seen earlier that any vector a can be mapped to a vector b of equal length by a
reflection across a hyperplane whose normal vector is the vector a− b.

This gives a way to construct a full QR decomposition of the matrix A so that we
change each colomn from left to right to a column of an upper triangular matrix by
multiplication from the left by the orthogonal matrices of appropriate reflections.

Let a1 be the first column of A, and Q the matrix of the reflection that maps a1 to
(|a1|, 0, . . . , 0)T . If in Qi · · ·Q1A the first i columns are already “above” the diagonal
then let Q̃i+1 be the matrix of the reflection mapping the first column of the lower right

(m− i)× (n− i) submatrix of Q1 · · ·QiA, than choose Qi+1 =

[

I 0
0 Q̃i+1

]

, which is also

orthogonal. Then we get: Qn . . .Q1A = R upper triangular, so A = Q−1
1 · · ·Q−1

n R =
(QT

1 · · ·QT
n )R = Q1 · · ·QnR, since the reflections are symmetric (self adjoint). Hhere the

first term is orthogonal because it is a product of orthogonal matrices.

Example. Determine the full QR decomposition of the matrix A below by Householder
reflections.

A =





1 0 1
2 2 −3

−2 5 −7





Solution.





1
2

−2



 7→





3
0
0



 by the reflection across the hyperplane with normalvector

(2,−2, 2), or equivalently a = (1,−1, 1). Its matrix is Q1 = I − 2
3aa

T , so

Q1A =





1/3 2/3 −2/3
2/3 1/3 2/3

−2/3 2/3 1/3









1 0 1
2 2 −3

−2 5 −7



 =





3 −2 3
0 4 −5
0 3 −5




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Next we need to map (4, 3) to (5, 0), so Q̃2 = I − 2
10

[

1 −3
−3 9

]

=

[

4/5 3/5
3/5 −4/5

]

, and

Q2Q1A =





1 0 0
0 4/5 3/5
0 3/5 −4/5









3 −2 3
0 4 −5
0 3 −5



 =





3 −2 3
0 5 −7
0 0 1



 = R, and

A = Q1Q2R =
1

15





5 2 14
10 10 −5

−10 11 2









3 −2 3
0 5 −7
0 0 1





Givens rotations

What is the matrix of a rotation of R2 by degree α? Using complex numbers: x+iy 7→
(x+ iy)(cosα+ i sinα) = (x cosα− y sinα) + i(x sinα+ y cosα). So if A is the matrix of
this transformation in the standard basis { 1, i }, then

A

[

x
y

]

=

[

x cosα− y sinα
x sinα+ y cosα

]

⇒ A =

[

cosα − sinα
sinα cosα

]

For any

[

a
b

]

there exists a rotation

[

a
b

]

7→
[

r
0

]

, where r =
√
a2 + b2. This will be the

rotation about the origin by angle −α, where α is the angle of a+ bi. Its matrix is

[

cosα sinα
− sinα cosα

]

=

[

a/r b/r
−b/r a/r

]

. Indeed,

[

a/r b/r
−b/r a/r

] [

a
b

]

=

[

r
0

]

.

Def. A Givens rotation is a rotation in the plane spanned by two coordinate axes. It
leaves the other axes fixed. Its matrix is







































1
. . .

1
cosα − sinα

1
. . .

1
sinα cosα

1
. . .

1







































Proposition. For ∀ v = (. . . , a, . . . , b . . .) vector ∃ a Givens rotation, which maps it to
(. . . , r . . . , 0 . . .), where r =

√
a2 + b2, and in every vecor only the i’th and j’th component

can change.
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Proof. The matrix







































1
. . .

1
a/r b/r

1
. . .

1
−b/r a/r

1
. . .

1







































will do.

We can do Givens rotations to replace all but the first element of the first column
by 0. Then we continue with the second column. The later rotations do not change the
elements of the previous columns, which we already made zero. In the end, if the last
element of the diagonal turns out to be negative, we have to do a reflecion in the end.

Exercise. Calculate the QR decomposition of the matrix A below by using Givens rota-
tions.

A =





4 5 5
3 −15 −5

12 40 5





Solution First we map the first column vector (4, 3, 12) to (5, 0, 12) applying a rotation
in the first two coordinates, this way making the element a21 zero, while only changing
elements in the first two rows.

Q1A =





4/5 3/5 0
−3/5 4/5 0

0 0 1









4 5 5
3 −15 −5

12 40 5



 =





5 −5 1
0 −15 −7

12 40 5





Then we use rotation in the first and third coordinate (thus leaving the zero we already
obtained intact) to map (5, 0, 12) to (13, 0, 0).

Q2Q1A =





5/13 0 12/13
0 1 0

−12/13 0 5/13









5 −5 1
0 −15 −7

12 40 5



 =





13 35 5
0 −15 −7
0 20 1





Finally we use rotation in the second and third coordinate mapping (0,−15, 20) to (0, 25, 0).

Q3Q2Q1A =





1 0 0
0 −3/5 4/5
0 −4/5 −3/5









13 35 5
0 −15 −7
0 20 1



 =





13 35 5
0 25 5
0 0 5



 = R

Then

Q = Q3Q2Q1 =
1

13





4 3 12
−3 −12 4
12 −4 −3




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and

A = QTR =
1

3





4 −3 12
3 −12 −4

12 4 −3









13 35 5
0 25 5
0 0 5





Remark. A QR decomposition, in a broader sense, exists even if the columns of A are
not independent. In that case the Q of the reduced decomposition will be an m× r matrix
where r = rankA, and R will be an r × n upper triangular matrix which can also have
zeros in its diagonal. The other methods for the full decomposition can also be applied.
In such a case even the reduced decomposition will not necessarily be unique.

Applications

The determinant, rank and image can be easily determined from a QR form, and it
is more stable numerically than the Gaussian method. To approximate the eigenvalues of
a matrix (provided they are all real, for instance when A is symmetric), one can use the
following algorithm:

A1 :=A

A1 =Q1R1 a (full) QR decomposition

...

Ai =QiRi a QR decomposition

Ai+1 :=RiQi

Ai+1 =Qi+1Ri+1 a QR decomposition

...

Note that here Ai+1 = Q−1
i AiQi, so all Ai are similar, and thus have the same eigenvalues.

Under certain conditions Ai converges to an upper triangular matrix with the eigenvalues
in its diagonal.


