Generalizing the inverse to non-invertible matrices

We know that for $A \in K^{n \times n}$, if $|A| \neq 0$ then every system of equations $A \mathbf{x}=\mathbf{b}$ has a unique solution, and the solution can be obtained az $\mathbf{x}=$ $A^{-1} \mathbf{b}$. But there may be a unique solution even if the matrix is not a square matrix but has independent columns.
Can we generalize the inverse for singular or rectangular matrices? What we want is an inverse A^{+}for every real matrix such that

- If $A \mathbf{x}=\mathbf{b}$ has a unique solution then it is $\mathbf{x}=A^{+} \mathbf{b}$.
- If $A \mathbf{x}=\mathbf{b}$ is consistent but has more than one solutions, then $A^{+} \mathbf{b}$ is one of the solutions; let it be the one closest to the origin (i.e. for which $|\mathbf{x}|$ is minimal)
- If $A \mathbf{x}=\mathbf{b}$ is inconsistent then $A^{+} \mathbf{b}$ should be a best approximate solution, that is, a solution of the normal equations $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ (and if there are more, then the one for which $|\mathbf{x}|$ is minimal).
We shall see that such a generalized inverse always exists.

The Moore-Penrose inverse

Def. For $A \in \mathbb{R}^{m \times n}$, the matrix $A^{+} \in \mathbb{R}^{n \times m}$ is the Moore-Penrose inverse, or in other words, the pseudoinverse of A if
(1) $A=A A^{+} A$,
(2) $A^{+}=A^{+} A A^{+}$,
(3) $A A^{+}$is symmetric,
(4) $A^{+} A$ is symmetric.

Theorem. If A^{+}is a pseudoinverse of A, then for any system of equations $A \mathbf{x}=\mathbf{b}$, the vector $A^{+} \mathbf{b}$ is the unique (best approximate) solution of the system for which $|\mathbf{x}|$ is the smallest possible.
Proof. It is enough to show that $\mathbf{x}=A^{+} \mathbf{b}$ is the solution of the normal equations $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ with minimal $|\mathbf{x}|$.
It is indeed a solution:
$A^{T} A\left(A^{+} \mathbf{b}\right)=A^{T}\left(A A^{+}\right) \mathbf{b} \stackrel{(3)}{=} A^{T}\left(A A^{+}\right)^{T} \mathbf{b}=\left(A A^{+} A\right)^{T} \mathbf{b} \stackrel{(1)}{=} A^{T} \mathbf{b}$.
The smallest solution:
If \mathbf{y} is another solution then $\mathbf{y}=A^{+} \mathbf{b}+\mathbf{h}$, where \mathbf{h} is a solution of the homogeneous system, i.e. $A^{T} A \mathbf{h}=\mathbf{0}$, thus $0=\mathbf{h}^{T} A^{T} A \mathbf{h}=|A \mathbf{h}|^{2} \Rightarrow$ $A \mathbf{h}=\mathbf{0}$.
On the other hand, $A^{+} \mathbf{b}=\left(A^{+} A A^{+}\right) \mathbf{b} \stackrel{(4)}{=}\left(A^{+} A\right)^{T} A^{+} \mathbf{b}=A^{T}\left(A^{+}\right)^{T} A^{+} \mathbf{b}=$ $A^{T} \mathbf{c}$ for $\mathbf{c}=\left(A^{+}\right)^{T} A^{+} \mathbf{b}$
so $\left\langle A^{+} \mathbf{b}, \mathbf{h}\right\rangle=\left(A^{T} \mathbf{c}\right)^{T} \mathbf{h}=\mathbf{c}^{T} A \mathbf{h}=\mathbf{0}$, and
$|\mathbf{y}|^{2}=\left\langle A^{+} \mathbf{b}+\mathbf{h}, A^{+} \mathbf{b}+\mathbf{h}\right\rangle=\left|A^{+} \mathbf{b}\right|^{2}+|\mathbf{h}|^{2} \geq\left|A^{+} \mathbf{b}\right|^{2}$, so indeed, the length of $A^{+} \mathbf{b}$ is minimal. This also shows that all the other solutions have strictly greater length, so the smallest best approximate solution is unique if A^{+}exists.

Existence of the pseudoinverse for matrices of full rank

Lemma. Spse $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A)=r$.
Then $\operatorname{rank}\left(A^{T} A\right)=r, A^{T} A$ is symmetric, and all its eigenvalues are nonnegative.
Proof. $A^{T} A \in \mathbb{R}^{n \times n}$.
$\operatorname{Ker} A=\operatorname{Ker} A^{T} A$: The \subseteq inclusion is obvious, and \supseteq is also true because $A^{T} A \mathbf{x}=\mathbf{0} \Rightarrow 0=\mathbf{x}^{T} A^{T} A \mathbf{x}=|A \mathbf{x}|^{2} \Rightarrow A \mathbf{x}=\mathbf{0}$.
So by the Dimension Theorem, $\operatorname{rank}(A)=n-\operatorname{dim} \operatorname{Ker} A=n-$ $\operatorname{dim} \operatorname{Ker} A^{T} A=\operatorname{rank}\left(A^{T} A\right)$.
$\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A$, so $A^{T} A$ is symmetric.
If λ is an eigenvalue of $A^{T} A$ with eigenvector $\mathbf{v} \neq \mathbf{0}$, then $A^{T} A \mathbf{v}=\lambda \mathbf{v}$ gives $0 \leq|A \mathbf{v}|^{2}=\mathbf{v}^{T} A^{T} A \mathbf{v}=\mathbf{v}^{T} \lambda \mathbf{v}=\lambda|\mathbf{v}|^{2}$, and here $|\mathbf{v}|^{2}>0$, so $\lambda \geq 0$.
Exercise. Determine the rank and the eigenvalues of $A^{T} A$ and $A A^{T}$ for $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & 1 & 1\end{array}\right]$.
Now let's see how we can construct the pseudoinverse. Notice first that if it exists, it is unique, since for every i, the vector $A^{+} \mathbf{e}_{i}$ is the unique smallest, best approximate solution of $A \mathbf{x}=\mathbf{e}_{i}$, so $A^{+}=A^{+} I=A^{+}\left[\mathbf{e}_{1} \ldots \mathbf{e}_{m}\right]=$ $\left[A^{+} \mathbf{e}_{1} \ldots A^{+} \mathbf{e}_{m}\right]$ is also unique.
Def. We call a matrix $A \in K^{m \times n}$ a matrix of full rank if $\operatorname{rank} A=$ $\min \{m, n\}$, that is, the largest possible rank for a matrix of this size.
Theorem. Let $A \in \mathbb{R}^{m \times n}$ be a matrix of full rank.
(1) If $\operatorname{rank} A=n$ then $A^{T} A$ is invertible, and $A^{+}=\left(A^{T} A\right)^{-1} A^{T}$. In this case, A^{+}is a left inverse: $A^{+} A=I$.
(2) If rank $A=m$ then $A A^{T}$ is invertible, and $A^{+}=A^{T}\left(A A^{T}\right)^{-1}$. In this case, A^{+}is a right inverse: $A A^{+}=I$.
Proof. (1): Let $B=\left(A^{T} A\right)^{-1} A^{T}$. Then
$B A=\left(A^{T} A\right)^{-1} A^{T} A=I_{n}$ is symmetric,
and $A B=A\left(A^{T} A\right)^{-1} A^{T}$ is also symmetric:
$(A B)^{T}=\left(A\left(A^{T} A\right)^{-1} A^{T}\right)^{T}=A\left(\left(A^{T} A\right)^{-1}\right)^{T} A^{T}=A\left(A^{T} A\right)^{-1} A^{T}=A B$.
Furthermore $A B A=A I=A$ and $B A B=I B=B$.
So $B=A^{+}$.
(2): Apply part (1) to $C=A^{T}$.

Exercise. Calculate the pseudoinverse of $A=\left[\begin{array}{rrr}1 & 2 & 1 \\ 2 & -1 & 1\end{array}\right]$.
Solution. A is of full row rank.

$$
A A^{T}=\left[\begin{array}{rrr}
1 & 2 & 1 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
2 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
6 & 1 \\
1 & 6
\end{array}\right], \quad\left(A A^{T}\right)^{-1}=\frac{1}{35}\left[\begin{array}{rr}
6 & -1 \\
-1 & 6
\end{array}\right]
$$

$$
A^{+}=A^{T}\left(A A^{T}\right)^{-1}=\left[\begin{array}{rr}
1 & 2 \\
2 & -1 \\
1 & 1
\end{array}\right] \frac{1}{35}\left[\begin{array}{rr}
6 & -1 \\
-1 & 6
\end{array}\right]=\frac{1}{35}\left[\begin{array}{rr}
4 & 11 \\
13 & -8 \\
5 & 5
\end{array}\right] .
$$

Pseudoinverse for any real matrix

Theorem (Rank factorization). Every matrix $A \in K^{m \times n}$ can be written as the product of two full-rank matrices: if $\operatorname{rank}(A)=r$, then $A=B C$, where $B \in K^{m \times r}$ and $C \in K^{r \times n}$ both have rank r.

Proof. Use Gaussian elimination to calculate the reduced row-echelon form L of the matrix A. Let B consist of the columns of A corresponding to the columns of L containing leading ones, and let C consist of the nonzero rows of L.
Since elementary row operations do not change the linear correspondances between the columns of the matrix, the elements of the $i^{\prime} t h$ column of L tell the coefficients of the linear combination of the columns of B resulting in the i 'th column of A. Thus $A=B C$, and it is clear from the row echelon form that both B and C have rank r.

Exercise. Calculate the rank factorization of the matrix

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
1 & 1 & 3
\end{array}\right]
$$

Solution.

$$
A \mapsto\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 1 & 2
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \Rightarrow B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right], C=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

Theorem. If $A \in \mathbb{R}^{m \times n}$ and $A=B C$ is a rank factorization of A then $A^{+}=C^{+} B^{+}$.

Proof. We shall use that $B^{+} B=I$ and $C C^{+}=I$ according to the theorem about the pseudoinverses of full-rank matrices. We show that $A^{+}:=C^{+} B^{+}$ indeed satisfies the four conditions for the pseudoinverse.
$A A^{+} A=B C C^{+} B^{+} B C=B C C^{+} I C=B C C^{+} C=B C$.
$A^{+} A A^{+}=C^{+} B^{+} B C C^{+} B^{+}=C^{+} B^{+} B I B^{+}=C^{+} B^{+} B B^{+}=C^{+} B^{+}=$ A^{+}.
$A A^{+}=B C C^{+} B^{+}=B I B^{+}=B B^{+}$is symmetric because B^{+}is a pseudoinverse.
$A^{+} A=C^{+} B^{+} B C=C^{+} I C=C^{+} C$ is symmetric because C^{+}is a pseudoinverse.

Exercise. Calculate the pseudoinverse of the matrix A in the previous exercise. Find the optimal solution of $A \mathbf{x}=\mathbf{b}$ for $\mathbf{b}=(1,0,1)^{T}$ and $\mathbf{b}=(1,0,2)^{T}$.
Solution. $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 1 & 3\end{array}\right]=B C=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$.

$$
B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right], B^{T} B=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right],
$$

$$
B^{+}=\left(B^{T} B\right)^{-1} B^{T}=\frac{1}{3}\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & 1
\end{array}\right]
$$

$$
C=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right], C C^{T}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
2 & 5
\end{array}\right],
$$

$$
C^{+}=C^{T}\left(C C^{T}\right)^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 2
\end{array}\right] \frac{1}{6}\left[\begin{array}{rr}
5 & -2 \\
-2 & 2
\end{array}\right]=\frac{1}{6}\left[\begin{array}{rr}
5 & -2 \\
-2 & 2 \\
1 & 2
\end{array}\right]
$$

$$
A^{+}=C^{+} B^{+}=\frac{1}{6}\left[\begin{array}{rr}
5 & -2 \\
-2 & 2 \\
1 & 2
\end{array}\right] \frac{1}{3}\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & 1
\end{array}\right]=\frac{1}{18}\left[\begin{array}{rrr}
12 & -9 & 3 \\
-6 & 6 & 0 \\
0 & 3 & 3
\end{array}\right]
$$

$$
A^{+}=\frac{1}{6}\left[\begin{array}{rrr}
4 & -3 & 1 \\
-2 & 2 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

For $\mathbf{b}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]: \mathbf{x}=A^{+} \mathbf{b}=\frac{1}{6}\left[\begin{array}{r}5 \\ -2 \\ 1\end{array}\right]$, for $\mathbf{b}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \mathbf{x}=A^{+} \mathbf{b}=\frac{1}{3}\left[\begin{array}{r}3 \\ -1 \\ 1\end{array}\right]$.
The first is a solution, the second is only an optimal approximate solution:
$A \mathbf{x}=\left[\begin{array}{l}4 / 3 \\ 1 / 3 \\ 5 / 3\end{array}\right] \approx\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$

