
Applied algebra Pseudoinverse 2020, Fall semester

Generalizing the inverse to non-invertible matrices

We know that for A ∈ Kn×n, if |A| 6= 0 then every system of equations
Ax = b has a unique solution, and the solution can be obtained az x =
A−1b. But there may be a unique solution even if the matrix is not a square
matrix but has independent columns.

Can we generalize the inverse for singular or rectangular matrices? What
we want is an inverse A+ for every real matrix such that

• If Ax = b has a unique solution then it is x = A+b.
• If Ax = b is consistent but has more than one solutions, then A+b

is one of the solutions; let it be the one closest to the origin (i.e. for
which |x| is minimal)

• If Ax = b is inconsistent then A+b should be a best approximate
solution, that is, a solution of the normal equations ATAx = ATb

(and if there are more, then the one for which |x| is minimal).

We shall see that such a generalized inverse always exists.

The Moore–Penrose inverse

Def. For A ∈ R
m×n, the matrix A+ ∈ R

n×m is the Moore–Penrose inverse,
or in other words, the pseudoinverse of A if
(1) A = AA+A,
(2) A+ = A+AA+,
(3) AA+ is symmetric,
(4) A+A is symmetric.

Theorem. If A+ is a pseudoinverse of A, then for any system of equations
Ax = b, the vector A+b is the unique (best approximate) solution of the
system for which |x| is the smallest possible.

Proof. It is enough to show that x = A+b is the solution of the normal
equations ATAx = ATb with minimal |x|.
It is indeed a solution:

ATA(A+b) = AT (AA+)b
(3)
= AT (AA+)Tb = (AA+A)Tb

(1)
= ATb.

The smallest solution:
If y is another solution then y = A+b + h, where h is a solution of the
homogeneous system, i.e. ATAh = 0, thus 0 = hTATAh = |Ah|2 ⇒
Ah = 0.

On the other hand, A+b = (A+AA+)b
(4)
=(A+A)TA+b = AT (A+)TA+b =

AT c for c = (A+)TA+b

so 〈A+b,h 〉 = (AT c)Th = cTAh = 0, and
|y|2 = 〈A+b + h, A+b + h 〉 = |A+b|2 + |h|2 ≥ |A+b|2, so indeed, the
length of A+b is minimal. This also shows that all the other solutions have
strictly greater length, so the smallest best approximate solution is unique
if A+ exists. ⊓⊔
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Existence of the pseudoinverse for matrices of full rank

Lemma. Spse A ∈ R
m×n and rank(A) = r.

Then rank(ATA) = r, ATA is symmetric, and all its eigenvalues are non-
negative.

Proof. ATA ∈ R
n×n.

KerA = KerATA: The ⊆ inclusion is obvious, and ⊇ is also true because
ATAx = 0 ⇒ 0 = xTATAx = |Ax|2 ⇒ Ax = 0.
So by the Dimension Theorem, rank(A) = n − dimKerA = n −
dimKerATA = rank(ATA).
(ATA)T = AT (AT )T = ATA, so ATA is symmetric.
If λ is an eigenvalue of ATA with eigenvector v 6= 0, then ATAv = λv gives
0 ≤ |Av|2 = vTATAv = vTλv = λ|v|2, and here |v|2 > 0, so λ ≥ 0.

Exercise. Determine the rank and the eigenvalues of ATA and AAT for

A =

[

1 2 −1
0 1 1

]

.

Now let’s see how we can construct the pseudoinverse. Notice first that if it
exists, it is unique, since for every i, the vector A+ei is the unique smallest,
best approximate solution of Ax = ei, so A+ = A+I = A+[e1 . . . em] =
[A+e1 . . . A

+em] is also unique.

Def. We call a matrix A ∈ Km×n a matrix of full rank if rankA =
min {m,n }, that is, the largest possible rank for a matrix of this size.

Theorem. Let A ∈ R
m×n be a matrix of full rank.

(1) If rankA = n then ATA is invertible, and A+ = (ATA)−1AT . In this
case, A+ is a left inverse: A+A = I.

(2) If rankA = m then AAT is invertible, and A+ = AT (AAT )−1. In this
case, A+ is a right inverse: AA+ = I.

Proof. (1): Let B = (ATA)−1AT . Then
BA = (ATA)−1ATA = In is symmetric,
and AB = A(ATA)−1AT is also symmetric:
(AB)T = (A(ATA)−1AT )T = A((ATA)−1)TAT = A(ATA)−1AT = AB.
Furthermore ABA = AI = A and BAB = IB = B.
So B = A+.
(2): Apply part (1) to C = AT .

Exercise. Calculate the pseudoinverse of A =

[

1 2 1
2 −1 1

]

.

Solution. A is of full row rank.

AAT =

[

1 2 1
2 −1 1

]





1 2
2 −1
1 1



 =

[

6 1
1 6

]

, (AAT )−1 =
1

35

[

6 −1
−1 6

]
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A+ = AT (AAT )−1 =





1 2
2 −1
1 1





1
35

[

6 −1
−1 6

]

= 1
35





4 11
13 −8
5 5



.

Pseudoinverse for any real matrix

Theorem (Rank factorization). Every matrix A ∈ Km×n can be writ-
ten as the product of two full-rank matrices: if rank(A) = r, then A = BC,
where B ∈ Km×r and C ∈ Kr×n both have rank r.

Proof. Use Gaussian elimination to calculate the reduced row-echelon form
L of the matrix A. Let B consist of the columns of A corresponding to the
columns of L containing leading ones, and let C consist of the nonzero rows
of L.
Since elementary row operations do not change the linear correspondances
between the columns of the matrix, the elements of the i′th column of L
tell the coefficients of the linear combination of the columns of B resulting
in the i’th column of A. Thus A = BC, and it is clear from the row echelon
form that both B and C have rank r.

Exercise. Calculate the rank factorization of the matrix

A =





1 0 1
0 1 2
1 1 3





Solution.

A 7→





1 0 1
0 1 2
0 1 2



 7→





1 0 1
0 1 2
0 0 0



 ⇒ B =





1 0
0 1
1 1



 , C =

[

1 0 1
0 1 2

]

Theorem. If A ∈ R
m×n and A = BC is a rank factorization of A then

A+ = C+B+.

Proof. We shall use that B+B = I and CC+ = I according to the theorem
about the pseudoinverses of full-rank matrices. We show that A+ := C+B+

indeed satisfies the four conditions for the pseudoinverse.
AA+A = BCC+B+BC = BCC+IC = BCC+C = BC.
A+AA+ = C+B+BCC+B+ = C+B+BIB+ = C+B+BB+ = C+B+ =
A+.
AA+ = BCC+B+ = BIB+ = BB+ is symmetric because B+ is a pseu-
doinverse.
A+A = C+B+BC = C+IC = C+C is symmetric because C+ is a pseu-
doinverse.
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Exercise. Calculate the pseudoinverse of the matrix A in the previous
exercise. Find the optimal solution of Ax = b for b = (1, 0, 1)T and
b = (1, 0, 2)T .

Solution. A =





1 0 1
0 1 2
1 1 3



 = BC =





1 0
0 1
1 1





[

1 0 1
0 1 2

]

.

B =





1 0
0 1
1 1



 , BTB =

[

1 0 1
0 1 1

]





1 0
0 1
1 1



 =

[

2 1
1 2

]

,

B+ = (BTB)−1BT =
1

3

[

2 −1
−1 2

] [

1 0 1
0 1 1

]

=
1

3

[

2 −1 1
−1 2 1

]

C =

[

1 0 1
0 1 2

]

, CCT =

[

1 0 1
0 1 2

]





1 0
0 1
1 2



 =

[

2 2
2 5

]

,

C+ = CT (CCT )−1 =





1 0
0 1
1 2





1

6

[

5 −2
−2 2

]

=
1

6





5 −2
−2 2
1 2



 .

A+ = C+B+ =
1

6





5 −2
−2 2
1 2





1

3

[

2 −1 1
−1 2 1

]

=
1

18





12 −9 3
−6 6 0
0 3 3





A+ =
1

6





4 −3 1
−2 2 0
0 1 1





For b =





1
0
1



: x = A+b = 1
6





5
−2
1



, for b =





1
0
2



, x = A+b = 1
3





3
−1
1



.

The first is a solution, the second is only an optimal approximate solution:

Ax =





4/3
1/3
5/3



 ≈





1
0
2






