
Applied algebra SVD 2020, Fall semester

Generalizing the orthogonal diagonalization to any real matrix

We know that if A ∈ R
n×n is a symmetric matrix then there exists an

orthogonal matrix Q ∈ R
n×n such that Q−1AQ = QTAQ is diagonal.

This means: there is an appropriate orthonormal basis B such that the
matrix of the linear transformation x 7→ Ax with respect to the basis B is
diagonal.

We want to generalize this to any linear map:
Let A ∈ R

m×n. We want to find a pair of orthonormal bases (B, C) such
that the matrix of the linear map f : Rn → R

m, x 7→ Ax with respect to
(B, C) is diagonal.
This means: we need to find an orthonormal basis B of R

n such that
{Ab1, . . . , Abn } is an orthogonal system of vectors.

Lemma. If x is an eigenvector of ATA, and x⊥y, then Ax⊥Ay.
Proof. 〈Ay, Ax 〉 = (Ay)TAx = yTATAx = yTλx = λ 〈y,x 〉 = 0.

Corollary. We can choose B to be an orthonormal eigenbasis of ATA
(such a basis exists, since ATA is symmetric). Then Ab1, . . . , Abn are
orthogonal.
⇒ We can normalize and complete them to an orthonormal basis of Rm.
(Actually, the eigenvalues are ≥ 0, so the diagonal form will have ≥ 0
diagonal elements.)

Singular Value Decomposition

Def. Let A ∈ R
m×n.

A = UΣV T is a full singular value decomposition (full SVD) of A if
U ∈ R

m×m and V ∈ R
n×n are orthogonal, and

Σ ∈ R
m×n is a diagonal matrix with diagonal elements σ1 ≥ σ2 ≥ · · · ≥ 0.

(So U−1AV = Σ is a diagonal matrix of x 7→ Ax, with respect to the pair
(B, C) of bases, where B consists of the columns of V and C consists of the
colums of U .)

Def.: The singular values of A ∈ R
m×n are σ1 ≥ · · · ≥ σr > 0, where

σ2
1 ≥ . . . ≥ σ2

r > 0 are the positive eigenvalues of ATA with multiplicities
(the number of these is r = rankATA = rankA).

Def. Let A ∈ R
m×n with r = r(A).

A = U1Σ1V
T
1 is a reduced singular value decomposition (reduced SVD)

of A if
U1 ∈ R

m×r and V1 ∈ R
n×r are semiorthogonal, and

Σ1 ∈ R
r×r is a diagonal matrix with diag. elements σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
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Theorem (Reduced SVD). Every matrix A ∈ R
m×n has a reduced SVD

A = U1Σ1V
T
1 , where the diagonal elements of Σ1 are the singular values of

A.

Proof: The proof also gives an algorithm for calculating the decomposition.
Let the positive eigenvalues of the symmetric matrix ATA be λ1 ≥ λ2 ≥
. . . ≥ λr > 0, and {b1, . . . ,br } be an orthonormal system of eigenvectors
for the given eigenvalues. Then V1 = [b1 . . .br] is a semiorthogonal matrix.
Furthermore, Abi⊥Abj for i 6= j by the Lemma, and the lengthes of the

vectors Abi are
√

bT
i A

TAbi =
√

λib
T
i bi =

√
λi = σi. So U1 = AV1Σ

−1
1 is

a semiorthogonal matrix. Hence U1Σ1V
T
1 = AV1V

T
1 .

We only need to prove that AV1V
T
1 = A. We could complete

the orthonormal system {b1, . . .br } to a basis of R
n with eigenvectors

br+1, . . . ,bn of ATA for the eigenvalue 0. Let V = [b1 . . .bn] = [V1|T ].
Then V is invertible, and AV1V

T
1 V = [AV1V

T
1 V1|AV1V

T
1 T ] = [AV1|0] =

A[V1|T ] = AV , since br+1, . . . ,bn ∈ KerATA = KerA. We can simplify
by V , and we get that AV1V

T
1 = A.

Example:

Pl.: A =

[

1 2
−2 −4

]

, ATA =

[

5 10
10 20

]

, kATA(x) = x2−25x = x(x−25),

λ1 = 25, λ2 = 0, σ1 = 5, Σ = [5],

The eigenvector of ATA for λ1:

[

1
2

]

, or to have an eigenvecor of length 1,

it is 1√
5

[

1
2

]

.

V1 = 1√
5

[

1
2

]

, AV1 = 1√
5

[

5
−10

]

,

We get U1 by normalizing the columns of AV1, in fact by dividing them by

σ1, . . . , σr: U1 = 1√
5

[

1
−2

]

.

A = U1Σ1V
T
1 = 1√

5

[

1
−2

]

· [5] · 1√
5
[ 1 2 ] .

Theorem (Full SVD). Every matrix A ∈ R
m×n has a full singular value

decomposition.

We can complete the U1 and V1 of the reduced SVD to orthogonal matrices:
V = [V1|V ′] and U = [U1|U ′] and let Σ be the m× n diagonal matrix with
the only nonzero diag. elements at the first r positions: σ1 ≥ · · · ≥ σr > 0.
Then

UΣV T = [U1|U ′]

[

Σ1 0
0 0

] [

V T
1

(V ′)
T

]

= [U1Σ1| 0]
[

V T
1

(V ′)
T

]

= U1Σ1V
T
1 = A.
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Example: Find the full SVD of the matrix of the previous example. V =

[V1|V ′] = 1√
5

[

1 −2
2 1

]

, and U = [U1|U ′] = 1√
5

[

1 2
−2 1

]

.

Then A = UΣV T = 1√
5

[

1 2
−2 1

]

·
[

5 0
0 0

]

· 1√
5

[

1 2
−2 1

]

.

Applications of the SVD

Pseudoinverse: If A = U1Σ1V
T
1 is a reduced SVD, then the pseudoinverse

of A is A+ = V1Σ
−1
1 UT

1

Proof: It is easy to check the four properties of the pseudoinverse, using
that V T

1 V1 = Ir×r and UT
1 U1 = Ir×r.

Polar decomposition: If A = PQ is a polar decomposition of the matrix
A ∈ R

n×n if P is a symmetric matrix with nonnegative eigenvalues, and Q
is an orthogonal matrix.

Theorem. If A = UΣV T is a full SVD, then A = (UΣUT )(UV T ) is a
polar decomposition.
Proof. (UΣUT )T = UΣTUT = UΣUT , and the eigenvalues of UΣUT =
UΣU−1 are the same as the eigenvalues of Σ, which are its diagonal ele-
ments, so they are nonnegative.
UV T = UV −1 is a product of two orthogonal matrices, so it is also orthog-
onal.

Eckart–Young theorem about low-rank approximation. Let A =
U1Σ1V

T
1 be a reduced SVD, and d < r = rank(A). Then the best approxi-

mating matrix of rank at most d for A is

A(d) = U (d)Σ(d)(V (d))T ,

where U (d) and V (d) consist the first d columns of U1 and V1, respectively
and Σ(d) is the left upper d × d submatrix of Σ1. Here best approximat-
ing matrix means that ||A − M || is minimal among the matrices M with

rankM ≤ d if M = A(d), and for a matrix M , the norm of ||M || is
√

∑

i,j

m2
ij .

Example. Determine the polar decomposition of the matrix

A =

[

1 2
−2 −4

]

.

Solution. Earlier we got the full SVD

A = UΣV T =
1√
5

[

1 2
−2 1

]

·
[

5 0
0 0

]

· 1√
5

[

1 2
−2 1

]

.
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So A = PQ where

P = UΣUT =
1√
5

[

1 2
−2 1

]

·
[

5 0
0 0

]

1√
5

[

1 −2
2 1

]

=

[

1 −2
−2 4

]

Q = UV T =
1√
5

[

1 2
−2 1

]

1√
5

[

1 2
−2 1

]

=
1

5

[

−3 4
−4 −3

]

.

Example. Calculate the reduced SVD of the following matrix A. Use this
to find the pseudoinverse and the best 1-rank approximation of A.

A =

[

1 2 0
0 −2 1

]

Solution.

ATA =





1 2 0
2 8 −2
0 −2 1



 , kATA(x) = −(x− 9)(x− 1)x ⇒ λ1 = 9, λ2 = 1
σ1 = 3 σ2 = 1

Eigenvectors of ATA:

λ1 = 9 :





−8 2 0
2 −1 −2
0 −2 −8



 7→ 7→





1 0 1
0 1 4
0 0 0



 , v1 =
1

3
√
2





−1
−4
1





λ1 = 1 :





0 2 0
2 7 −2
0 −2 0



 7→ 7→





1 0 −1
0 1 0
0 0 0



 , v2 =
1√
2





1
0
1





V1 =
1

3
√
2





−1 3
−4 0
1 3



 , AV1 =
1√
2

[

−3 1
3 1

]

, U1 =
1√
2

[

−1 1
1 1

]

A = U1Σ1V
T
1 =

1√
2

[

−1 1
1 1

] [

3 0
0 1

]

1

3
√
2

[

−1 −4 1
3 0 3

]

A+ =
1

3
√
2





−1 3
−4 0
1 3





[

1/3 0
0 1

]

1√
2

[

−1 1
1 1

]

=
1

9





5 4
2 −2
4 5





A(1) =
1√
2

[

−1
1

]

[3]
1

3
√
2
[−1 −4 1 ] =

[

1/2 2 −1/2
−1/2 −2 1/2

]


