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Positive matrices

Def. A ∈ R
m×n is called a positive matrix (A > 0), if aij > 0 for all i, j.

A is a nonnegative matrix (A ≥ 0) if aij ≥ 0 for all i, j.
We define positive and nonnegativ vectors analogously.
A column vector v ∈ R

n is called a stochastic vector if

v ≥ 0 and
∑

vi = 1

(i.e. v ≥ 0 and 1
T
v = 1, where 1 denotes the column vector whose every component is

1).
A ∈ R

n×n is a stochastic matrix if all of its columns are stochastic vectors.

Example. The rank matrices of the PageRank algorithm are stochastic matrices. The
modified link matrix Â corresponding to the “impatient surfer” is a positive stochastic
matrix.

Theorem (Perron). If A ∈ R
n×n and A > 0, then

1) ρ(A) is an eigenvalue of A.
2) The multiplicity of ρ(A) in kA(x) is 1.
3) For every eigenvalue λ of A as of a complex matrix, if λ 6= ρ(A), then |λ| < ρ(A) (i.e.

ρ(A) is the dominant eigenvalue of A).
4) The 1-dimensional eigenspace for ρ(A) is generated by a positive vector, and ρ(A) is

the only eigenvalue for which there is a nonnegative eigenvector.

Example.

A =





1 2 1
2 1 1
3 3 2



 > 0, kA(x) =

∣

∣

∣

∣

∣

∣

1− x 2 1
2 1− x 1
3 3 2− x

∣

∣

∣

∣

∣

∣

= −x(x+ 1)(x− 5)

So the dominant eigenvalue is 5 = ρ(A) (the others, 0 and −1, are smaller in absolute
value).
The eigenvectors:

for λ = 5 :





−4 2 1
2 −4 1
3 3 −3



 7→7→





1 0 −1

2

0 1 −1

2

0 0 0



 ⇒ x =
t

2





1
1
2



 ,

so (1, 1, 2) is a positive eigenvector for λ = 5;

for λ = 0 :





1 2 1
2 1 1
3 3 2



 7→7→





1 0 1

3

0 1 1

3

0 0 0



 ⇒ x =
t

3





−1
−1
3



 ,

for λ = −1 :





2 2 1
2 2 1
3 3 3



 7→7→





1 1 0
0 0 1
0 0 0



 ⇒ x = t





−1
1
0





showing that there are no positive (or nonnegative) eigenvectors for 0 and −1.

Cor.: Every real positive 2×2 matrix is diagonalizable in R
2×2, since by Perron’s theorem

λ1 = ρ(A) ∈ R, and λ1 + λ2 = trA ∈ R, so λ2 ∈ R. Furthermore, λ1 6= λ2 by Perron/2, so
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A is diagonalizable.

For example, A =

[

1 1
0 1

]

cannot be conjugated by a real matrix P to a positive matrix.

Proposition If A is a positive stochastic matrix, then ρ(A) = 1.
Proof. 1

TA = 1
T ⇒ AT

1 = 1, so the positive AT matrix has a positive eigenvector for
the eigenvalue 1, and then by Perron/4, ρ(A) = ρ(AT ) = 1.

Corollary. If A ∈ R
n×n is a positive stochastic matrix, and v0 ∈ R

n is a stochastic vector,
then lim

k→∞

Ak
v0 = u is the unique stochastic eigenvector for λ = 1.

Proof. Note that by Perron’s theorem, in the Jordan form of A there is only a 1 × 1
block for 1, and all other blocks are for eigenvalues of absolute value smaller than 1,
so by the convergence theorem of the previous lecture, Ak is convergent. Furthermore,
limAk

v0 ∈ V1 = span(u).
But if 1T

v = 1, then 1
TAv = 1

T
v = 1, so v0, Av0, A2

v0, . . . are all stochastic vectors,
thus the limit vector is also stochastic. It is also clear that { cu | c ∈ R } contains only one
stochastic vector. ⊓⊔

So it follows that the distribution vector at the random surfer method indeed converges to
the rank vector, which is the stochastic eigenvector of the modified link matrix, Â for λ = 1.
Perron’s theorem also shows that in this case the eigenspace for 1 is one-dimensional, so
the rank vector is essentially unique. We shall see that the requirement of positivity can
be weakened.

A simplified example from economy. Let us try to study the housing condition of
people in a given country. Qualify some apartments as being in good condition and some
apartments as being in poor condition. Suppose that research shows that the lack of
maintenance on some apartments will turn each year 5% of the apartments of good quality
to poor ones; on the other hand, renovation of apartments of poor quality will turn 10%
of them to good ones. What is the distribution of the good and poor apartments in the
long run if the present situation is that 40% of the apartments are in good shape and 60%
of them are in bad shape.

One can see that if v0 =

[

0.4
0.6

]

is the initial distribution vector then distribution vector v1,

describing the conditions in one year can be obtained as v1 = Av0, where A =

[

0.95 0.1
0.05 0.9

]

is the so called transition matrix. By the previous corollary, the limit of the distribution
vectors is the stochastic eigenvector of A for eigenvalue 1.

A− I =

[

−0.05 0.1
0.05 −0.1

]

7→

[

1 −2
0 0

]

⇒ x = t ·

[

2
1

]

.

Among the eigenvectors x is a stochastic vector if 2t+ t = 1, i.e. t = 1

3
, so u =

[

2/3
1/3

]

. So

in the long run, 2/3 of the apartments will be in good condition, and 1/3 will be in poor
condition.

Nonnegative matrices

Def. A nonnegative matrix A ∈ R
n×n is primitive if there is a k > 0 such that Ak > 0.
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Lemma. If A ≥ 0, and Ak > 0, then Ak+1 > 0.
Proof. Note that the dot product of a positive and a nonzero nonnegative vector is positiv,
so Ak

v > 0 if 0 6= v ≥ 0. On the other hand, Ak > 0 insures that no column of A can be
0, so AkA > 0.

Corollary. The convergence theorem above holds for primitive stochastic matrices, as
well.

Example. The link matrix of the following graph is primitive.
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A =





0 0 1/2
1 0 1/2
0 1 0



, A2 =





0 1/2 0
0 1/2 1/2
1 0 1/2



, A3 =





1/2 0 1/4
1/2 1/2 1/4

0 1/2 1/2



,

A4 =





0 1/4 1/4
1/2 1/4 1/2
1/2 1/2 1/4



, A5 =





1/4 1/4 1/8
1/4 1/2 3/8
1/2 1/4 1/2





Actually, only the position of the positive entries in the matrix matter, not the actual
values, when we want to decide if it has a positive power.

Def. To a nonnegative matrix A ∈ R
n×n, we can assign an oriented graph G(A) on vertices

{ 1, 2, . . . , n } so that there is an arrow from i to j ⇔ aij > 0.

Lemma. If A ≥ 0, then (Ak)ij > 0 ⇔ there is an oriented walk of length k from i to j in
G(A).
Proof. (A2)ij =

∑

t

aitatj > 0 ⇔ ∃t: ait > 0 and atj > 0 ⇔ ∃t: i → t → j, i.e. there is a

walk of length 2 from i to j in G(A). With induction on k, we get the statement of the
lemma.

Def. We call a nonnegative square matrix irreducible if G(A) is strongly connected, i.e.
from every i to every j there is an oriented path.

Theorem. A nonnegative matrix is primitive ⇔ it is irreducible, and the greatest common
divisor of the lengthes of the oriented cycles in G(A) is 1.
Proof of the ⇒ direction. If A is not irreducible then there are i 6= j such that (Ak)ij = 0
for all k, so A is not primitive. If the gcd of the cycle lengthes is d > 1, then the diagonal
elements of Akd+1 are zero for every k, so A is not primitive.

Example. The graph assigned to the previous link matrix is the same as the original,
only with reversed arrows. This is strongly connected since it has a cycle going through
all vertices, and it has a 3-cycle, and a 2-cycle as well, so the gcd of the cycle lengthes is 1.
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Exercise. Determine, which of the following nonnegative matrices are irreducible, and
which are primitive.

A =





0 1 0
0 0 2
0 1 0



 B =





0 2 0
0 0 5
1 0 0



 C =





0 2 0
0 0 5
1 0 3





Solution. The graphs assigned to A and B are:

G(A) :

1
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G(B) :
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In G(A) there is no path from 2 to 1, so A is not irreducible, and then it is not primitive,
either. B is irreducible, because we can go along the 3-cycle from any vertex to any vertex,
but it is not primitive since the gcd of the cycle lengthes is 3. G(C) only differs from G(B)
by having an extra loop at 3. But this means that the gcd of the cycle lengthes became
1 (while the graph is still strongly connected), so C is primitive. (Note that if a matrix is
irreducible and at least one of its diagonal elements is positive, then it is always primitive.)

Theorem. Perron’s theorem holds for primitive matrices.
Proof. If A is primitive then there is a k > 0 such that Ak is positive.
It follows from the Jordan normal form that if the complex eigenvalues of A are λ1, . . . , λn

(with absolute values ρ(A) = |λ1| ≥ · · · ≥ |λn|), then A is similar to an upper triangular
matrix T with diagonal elements λ1, . . . , λn, then Ak ∼ T k, whose diag. elements are
λk
1 , . . . , λ

k
n, so these are the eigenvalues of T k, and then of the positive matrix Ak, as well,

with decreasing absolute values.
So |λk

1 | = ρ(Ak), and by Perron’s theorem, λk
1 = ρ(Ak) > |λk

i | for all i > 1. This implies
that ρ(A) = |λ1| > |λi| for all i > 1
(⇒ Perron/2,3 for A.)
The eigenspace Vλ1

of A is in the eigenspace of Ak for λk
1 , and the latter is 1-dimensional

spanned by a positive vector u. So Vλ1
= span(u).

(⇒ the first half of Perron/4 for A.)
Au ≥ 0, and u > 0, so λ1 is real, and > 0, proving that λ1 = |λ1| = ρ(A).
(⇒ Perron/1 for A.)
If there would be a nonnegative eigenvector of A for some other eigenvalue, then it would
be true for the positive matrix Ak, as well, contrary to Perron’s theorem.
(⇒ the second half of Perron/4. for A.)

Remark. Most of the statements of Perron’s theorem also hold for irreducible matrices
(Perron–Frobenius theorem).


