
Applied algebra Exercises 2020, Fall semester

PageRank

1. Consider the following three graphs:
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a) Determine the link matrices A1, A2 and A3 of the three graphs defined in the PageRank algo-
rithm. (If there is a vertex with no outgoing arrow, modify the graph so that you add an arrow
from this vertex to all vertices of the graph, including itself.)

b) Find the solutions of the equation x = Aix for each i, to give a ranking of the pages/vertices
of the graph.

c) Use the modified matrix Â3 = (1 − p)A3 + p 1
4J to get a full ranking with p = 1

4 and p = 1
2 ,

respectively.

Solution:
a) We need to modify G1 and G3 since their vertex 1 does not have outgoing arrows.
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Actually, we can fill the matrix column by column (without creating a modified graph) so that
aij is the probability of going from vi to vj if we randomly choose an outgoing arrow, and if
there is no such arrow then randomly choosing an arbitrary vertex.

A1 =


1/5 1 1/2 1/2 1/2
1/5 0 1/2 0 0
1/5 0 0 0 0
1/5 0 0 0 1/2
1/5 0 0 1/2 0

 A2 =


0 1/2 1/2 1/3
0 0 0 1/3
0 1/2 0 1/3
1 0 1/2 0

 A3 =


1/4 1 0 0
1/4 0 0 0
1/4 0 0 1
1/4 0 1 0



b) x = Ax is equivalent to the homogeneous system (A − I)x = 0. Solve this by Gaussian
elimination.

A1 − I =


−4/5 1 1/2 1/2 1/2

1/5 −1 1/2 0 0
1/5 0 −1 0 0
1/5 0 0 −1 1/2
1/5 0 0 1/2 −1

 7→


1/5 0 0 1/2 −1
1/5 −1 1/2 0 0
1/5 0 −1 0 0
1/5 0 0 −1 1/2
−4/5 1 1/2 1/2 1/2

 7→


1 0 0 5/2 −5
0 −1 1/2 −1/2 1
0 0 −1 −1/2 1
0 0 0 −3/2 3/2
0 1 1/2 5/2 −7/2

 7→


1 0 0 5/2 −5
0 1 −1/2 1/2 −1
0 0 −1 −1/2 1
0 0 0 −3/2 3/2
0 0 1 2 −5/2

 7→



Applied algebra Exercises/2 2020, Fall semester
1 0 0 5/2 −5
0 1 0 3/4 −3/2
0 0 1 1/2 −1
0 0 0 −3/2 3/2
0 0 0 3/2 −3/2

 7→


1 0 0 0 −5/2
0 1 0 0 −3/4
0 0 1 0 −1/2
0 0 0 1 −1
0 0 0 0 0

 ⇒ x = t ·


5/2
3/4
1/2
1
1

 ,
so the for the ranks, x1 > x2 > x3 > x4 = x5. (It can also be seen from the graph G1 that
the vertices v4 and v5 must have the same rank, since switching the labels 4 and 5 leaves the
graph unchanged.)

A2 − I =


−1 1/2 1/2 1/3

0 −1 0 1/3
0 1/2 −1 1/3
1 0 1/2 −1

 7→


1 −1/2 −1/2 −1/3
0 −1 0 1/3
0 1/2 −1 1/3
0 1/2 1 −2/3

 7→


1 0 −1/2 −1/2
0 1 0 −1/3
0 0 −1 1/2
0 0 1 −1/2

 7→


1 0 0 −2/3
0 1 0 −1/3
0 0 1 −1/2
0 0 0 0

 ⇒ x = t ·


2/3
1/3
1/2
1

 ,
so x4 > x1 > x3 > x2.

A3− I =


−3/4 1 0 0

1/4 −1 0 0
1/4 0 −1 1
1/4 0 1 −1

 7→


1/4 0 1 −1
1/4 −1 0 0
1/4 0 −1 1
−3/4 1 0 0

 7→


1 0 4 −4
0 −1 −1 1
0 0 −2 2
0 1 3 −3

 7→


1 0 4 −4
0 1 1 −1
0 0 −2 2
0 0 2 −2

 7→


1 0 0 0
0 1 0 0
0 0 1 −1
0 0 0 0

 ⇒ x = t ·


0
0
1
1

 .
It is again clear from the symmetries of the graph that x3 and x4 must be equal but ranks
shouldn’t be 0 (actually one would expect x1 > x2). The problem is that in G′3 the surfer
cannot get out of the subset { v3, v4 } once he got in. This is why we must use a modified Â3

matrix as described in part c). The eigenspace for eigenvalue 1 of a positive stochastic matrix
is always spanned by a positive eigenvector.

c) For p = 1
4 :

Â3 =


1/4 13/16 1/16 1/16
1/4 1/16 1/16 1/16
1/4 1/16 1/16 13/16
1/4 1/16 13/16 1/16



Â3−I =


−3/4 13/16 1/16 1/16

1/4 −15/16 1/16 1/16
1/4 1/16 1/16 13/16
1/4 1/16 13/16 1/16

 7→ 7→ · · ·


1 0 0 −7/16
0 1 0 −1/4
0 0 1 −1
0 0 0 0

 ⇒ x = t·


7/16
1/4

1
1

 .
For p = 1

2 :

Â3 =


1/4 5/8 1/8 1/8
1/4 1/8 1/8 1/8
1/4 1/8 1/8 5/8
1/4 1/8 5/8 1/8



Â3 − I =


−3/4 5/8 1/8 1/8

1/4 −7/8 1/8 1/8
1/4 1/8 −7/8 5/8
1/4 1/8 5/8 −7/8

 7→ 7→ · · ·


1 0 0 −3/4
0 1 0 −1/2
0 0 1 −1
0 0 0 0

 ⇒ x = t ·


3/4
1/2

1
1


In both versions x4 = x3 > x1 > x2.
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Linear maps

2. Which of the following sets form a vector space over R? Give a basis of the vector spaces.
a) 3× 3 real upper triangular matrices with the usual operations;
b) invertible 2× 2 real matrices;
c) polynomials of degree at most 4 which have −1 as one of their roots.

Solution: a) It is a vector space because it is a subspace of R3×3: the sum or scalar mul-
tiple of upper triangular matrices is upper triangular. A basis is {Eij | i ≤ j } =
{E11, E12, E22, E31, E32, E33 }, where Eij is the matrix where the j’th element of the ith row
is 1, and the others are 0.

b) Not a vector space. Though it is a subset of the vector space R2×2, it is not a subspace: 0
times an invertible matrix is the zero matrix, which is not invertible. But even if we add the 0

matrix to the subset we do not get a subspace:
[

1 0
0 1

]
+

[
0 1
1 0

]
=

[
1 1
1 1

]
is not invertible.

c) It is a vector space because it is a subspace of R[x] (the sum and scalar multiples of polynomials
with root −1 also have −1 as a root and the degree does not increase). A basis is:
{x+ 1, (x+ 1)x, (x+ 1)x2, (x+ 1)x3 }.

3. Choose a basis in the subspace of R4 spanned by the vectors v1 = (1, 2, 0, 1), v2 = (0,−1, 1,−1),
v3 = (1, 0, 2,−1), v4 = (0, 1, 1, 1), v5 = (2, 3, 3, 1), and give the coordinate vectors of each vi with
respect to this basis.
Solution: Bring the matrix A consisting of v1, . . . ,v5 as columns to reduced row echelon form
(rref(A)).

A =


1 0 1 0 2
2 −1 0 1 3
0 1 2 1 3
1 −1 −1 1 1

 7→


1 0 1 0 2
0 −1 −2 1 −1
0 1 2 1 3
0 −1 −2 1 −1

 7→


1 0 1 0 2
0 1 2 −1 1
0 0 0 2 2
0 0 0 0 0

 7→


1 0 1 0 2
0 1 2 0 2
0 0 0 1 1
0 0 0 0 0

 = rref(A)

Let us denote the columns of rref(A) with v′1, . . . ,v
′
5. Since the elementary row operations do

not change the linear correspondances between the columns of a matrix, the maximal independent
subset of the columns of rref(A) tells the positions of colums of A which form a basis in the
column space of A, i.e. the subspace of R4 spanned by v1, . . . ,v5. The columns of the leading
1’s of rref(A) (v′1 = e1, v′2 = e2 and v′4 = e3) are clearly independent, generate all those vectors
whose last entry is 0, and it can be seen from the colums of rref(A) that v′3 = e1 +2e2 = v′1 +2v′2,
while v′5 = 2e1 + 2e2 + e3 = 2v′1 + 2v′2 + v′4.

This means that B = {v1,v2,v4 } (i.e. the set of columns of A at the positions of the columns
of rref(A) containing leading 1’s) is a basis of span{v1,v2,v3,v4,v5} ≤ R4, and v3 = v1 + 2v2,
v5 = 2v1 + 2v2 + v4 shows that the coordinate vectors are

[v1]B =

 1
0
0

 , [v2]B =

 0
1
0

 , [v3]B =

 1
2
0

 , [v4]B =

 0
0
1

 , [v5]B =

 2
2
1

 .
(In fact, they are simply the columns of rref(A) if we cut off the zero rows.)

4. Determine the matrices of the following linear maps with respect to the given basis or pair of bases:
a) rotation of the 3 dimensional space about the z axis by 90◦, in the standard basis;
b) p(x) 7→ (xp(x))′ in the space of real polynomials of degree at most 2, in the standard basis
{ 1, x, x2 };
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c) x 7→ Ax, where A =

[
1 −1
4 −3

]
, B = {(1, 2), (1, 1) };

d) ϕ : R3 → R3, where ϕ(1, 2, 1) = (0, 2, 1), ϕ(1, 1, 1) = (1, 0, 0), ϕ(1, 0, 0) = (−1, 0, 0), in the
standard basis;

e) ϕ : R2 → R3, ϕ(x, y) = (x + y, y, x), in the pair of bases B1 = {(1, 1), (2, 0) }, B2 =
{(1, 2, 1), (−1, 1, 0), (0, 1, 1) };

f) orthogonal projection onto the plane x− 2y + z = 0, in the standard basis;
g) transposition of 2× 2 real matrices, in the standard basis.

Solution: a) e1 7→ e2, e2 7→ −e1, e3 7→ e3, so the standard matrix is

 0 −1 0
1 0 0
0 0 1


b) a + bx + cx2 7→ (ax + bx2 + cx3)′ = a + 2bx + 3cx2, so the standard matrix is the matrix

satisfying

A

 ab
c

 =

 a
2b
3c

 =

 1a+ 0b+ 0c
0a+ 2b+ 0c
0a+ 0b+ 3c

 ⇒ A =

 1 0 0
0 2 0
0 0 3


c) Directly: (1, 2) 7→ (−1,−2) = −1 · (1, 2) + 0 · (1, 1) gives the first column

[
−1

0

]
,

and (1, 1) 7→ (0, 1) = 1 · (1, 2) − 1 · (1, 1) gives the second column
[

1
−1

]
, so the matrix is[

−1 1
0 −1

]
. Or using the transition matrix:

[
1 1
2 1

]−1 [
1 −1
4 −3

] [
1 1
2 1

]
=

[
−1 1

0 −1

]

d) A ·

 1 1 1
2 1 0
1 1 0

 =

 0 1 −1
2 0 0
1 0 0

 ⇒ A =

 0 1 −1
2 0 0
1 0 0

 ·
 1 1 1

2 1 0
1 1 0

−1 =

−1 −1 3
0 2 −2
0 1 −1



e)

 1 −1 0
2 1 1
1 0 1

−1  1 1
0 1
1 0

[ 1 2
1 0

]
=

 1 0
−1 −2

0 2


f) The projection of the vector (x, y, z) onto the normal vector (1,−2, 1) of the plane is

(x, y, z)(1,−2, 1)

|(1,−2, 1)|2
(1,−2, 1) =

1

6
· (x− 2y+ z, −2x+ 4y− 2z, x− 2y+ z), so its projection onto

the plane is
(x, y, z)− 1

6 (x−2y+z, −2x+4y−2z, x−2y+z) = 1
6 (5x+2y−z, 2x+2y+2z, −x+2y+5z),

and the standard matrix of the projection is 1
6

 5 2 −1
2 2 2
−1 2 5

.
g) The action on the elements of the standard basis {E11, E12, E21, E22 } is E11 7→ E11, E12 7→

E21, E21 7→ E12, E22 7→ E22, so the standard matrix is


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.
5. Let A be the standard matrix of f : (x, y, z) 7−→ (x+ y − 2z, x+ z, 2x+ y − z,−x− z). Give bases

for the null space of A (i.e. the kernel of f) and for the column space of A (i.e. the image of f).
Solution: The matrix and its reduced row echelon form are

A =


1 1 −2
1 0 1
2 1 −1
−1 0 −1

 7→ 7→ 7→ rref(A) =


1 0 1
0 1 −3
0 0 0
0 0 0


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Thus the null space, i.e. the solution space of the homogeneous system of equations consists of the

vectors t·

−1
3
1

 (t ∈ R), so its basis is { [−1 3 1 ]
T }. The basis of the column space consists of

the columns of A which stand in the same positions as the columns of rref(A) containing a leading
1, i.e. { [ 1 1 2 −1 ]

T
, [ 1 0 1 0 ]

T }.

6. Find a linear transformation f : R3 → R3 such that
a) 0 6= Ker f ⊆ Im f ;
b) Im f is 2 dimesional, and f maps each vector of Im f into itself.

Solution: It suffices the give the action of the transformations on the elements of a basis, say, on
B = { e1, e2, e3 } of R3.
a) By the dimension theorem, dim Ker f + dim Im f = 3, and 1 ≤ dim Ker f ≤ dim Im f , so

dim Ker f = 1, and dim Im f = 2. This can be achieved by a linear map acting on the basis
elements as follows: e1 7→ 0, e2 7→ e1, e3 7→ e2

b) We can aim to make Im f the subspace span(e1, e2). Since f is supposed to map every vector
of Im f to itself, f : e1 7→ e1 and f : e2 7→ e2. To make the image only two dimensional we only
need to make the kernel nontrivial, say, let f : e3 7→ e3. This defines f , and this f satisfies all
the given conditions.

So the (standard) matrices of the maps constructed in part a) and b) are

a)

 0 1 0
0 0 1
0 0 0

 b)

 1 0 0
0 1 0
0 0 0


7. Prove that

a) rank(AB) ≤ min { rankA, rankB }, where A ∈ Kk×m és B ∈ Km×n;
b) | rankA− rankB| ≤ rank(A+B) ≤ rankA+ rankB, where A,B ∈ Km×n.

(Hint: Prove that, considering the matrices as linear maps in the natural way, ImAB ≤ ImA,
KerAB ≥ KerB and Im(A+B) ≤ span(ImA, ImB).)
Solution: For simplicity, we also denote by A and B the natural linear map corresponding to the
matrices A and B, respectively: A : x 7→ Ax and B : x 7→ Bx.
a) (AB)x = A(Bx) ∈ ImA, so ImAB ≤ ImA, thus rankAB ≤ rankA. On the other hand, if

Bx = 0, then (AB)x = A0 = 0, so KerB ≤ KerAB, which implies by the dimension theorem
that rankAB ≤ rankB. The two inequalities together prove the statement.

b) {(A + B)x |x ∈ Kn } = {Ax + Bx |x ∈ Kn } ≤ ImA + ImB. In general, dim(U + W ) ≤
dimU + dimW for the subspaces U,W ≤ V , since the union of the bases of U and W clearly
spans U + W := span(U,W ), and its maximal independent subset will be a basis of U + W .
This gives in our case that rank(A+B) ≤ rankA+rankB. If we apply this for A+B and −B,
we get rankA = rank((A+B) + (−B)) ≤ rank(A+B) + rank(−B) = rank(A+B) + rankB,
implying that rank(A+B) ≥ rankA− rankB, and similarly, rank(A+B) ≥ rankB − rankA.
The two together gives that rank(A+B) ≥ | rankA− rankB|.

8. Show that for any matrix A ∈ Km×n and any invertible matrices B ∈ Km×m and C ∈ Kn×n, we
have rankBA = rankAC = rankA.
Solution: Problem 7.a) implies that rankBA ≤ rankA, and rankA = rankB−1(BA) ≤ rankBA,
so rankBA = rankA, and similarly, rankAC = rankA.

9. Use Newton’s interpolation to find a polynomial f(x) of degree at most 3 such that f(−1) = 0,
f(0) = 1, f(2) = 1 and f(3) = −1.
Solution: The constant f0(x) ≡ 0 polynomial satisfies the first condition, f0(−1) = 0.
f1(x) = f0(x) + a(x + 1) still satisfies the first condition (since a(x + 1) = 0 at x = −1), and we
can choose a ∈ R so that it also satisfies the second:

1 = f1(0) = 0 + a · 1 ⇔ a = 1 ⇔ f1(x) = 0 + (x+ 1) = x+ 1.
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f2(x) = f1(x) + b(x+ 1)x satisfies the first two conditions since f1(x) satisties them and the second
term is 0 at −1 and 0. With the right choice of b ∈ R, it also satisfies the third condition:

1 = f2(2) = (2 + 1) + b · 3 · 2 ⇔ b = −1

3
⇔ f2(x) = −1

3
x2 +

2

3
x+ 1.

Finally, f3(x) = f2(x) + c(x+ 1)x(x− 2) satisfies the first three conditions since f2(x) did, and the
second term is 0 at −1, 0, 2, and it also satisfies the fourth if we choose c appropriately:

−1 = f3(3) = −1

3
· 32 +

2

3
· 3 + 1 + c · 4 · 3 · 1 ⇔ c = − 1

12
⇔ f3(x) = − 1

12
x3 − 1

4
x2 +

5

6
x+ 1.

So the unique f of degree at most 3 satisfying all four conditions is f(x) = − 1
12x

3 − 1
4x

2 + 5
6x+ 1.

Eigenvectors, eigenvalues, diagonalization

10. Find the eigenvalues and eigenspaces of the following matrices. What is the action of the transfor-
mation x 7→ Dx in R3.

A =

[
0 1
1 0

]
B =

[
0 −1
1 0

]
C =

 4 −4 1
1 −1 0
−2 4 1

 D =

 3 1 −3
0 1 0
2 1 −2


Solution: kA(x) = x2 − 1 ⇒ The eigenvalues of A are ±1.
Eigenspace for

λ = 1 :

[
−1 1 | 0

1 −1 | 0

]
7→

[
1 −1 | 0
0 0 | 0

]
⇒ x =

[
t
t

]
= t

[
1
1

]
Eigenspace for

λ = −1 :

[
1 1 | 0
1 1 | 0

]
7→

[
1 1 | 0
0 0 | 0

]
⇒ x =

[
−t
t

]
= t

[
−1

1

]
So the basis of the eigenspace V1 is {(1, 1) } and of V−1 is {(−1, 1) }.
kB(x) = x2 + 1 has no real roots, so B as a real matrix has no eigenvalues. However if we consider
B as a complex matrix, then its eigenvalues are ±i.
The eigenspace for

λ = i :

[
−i− 1

1− i

]
7→

[
1 −i
0 0

]
⇒ x =

[
it
t

]
= t

[
i
1

]
,

and similarly, the elements of the eigenspace for λ = −i are t
[
−i

1

]
.

kC(x) =

∣∣∣∣∣∣
4− x −4 1

1 −1− x 0
−2 4 1− x

∣∣∣∣∣∣ =

∣∣∣∣ 1 −1− x
−2 4

∣∣∣∣+ (1− x)

∣∣∣∣ 4− x −4
1 −1− x

∣∣∣∣ =

= (2− 2x) + (1− x)(x2 − 3x) = −(x− 1)(x2 − 3x+ 2) = −(x− 1)2(x− 2),

so the eigenvalues are 1, 1, 2.
Eigenspace for

λ = 1 :

 3 −4 1
1 −2 0
−2 4 0

 7→
 1 −2 0

3 −4 1
−2 4 0

 7→
 1 −2 0

0 2 1
0 0 0

 7→
 1 0 1

0 1 1
2

0 0 0

 ⇒ x = t

 −1
− 1

2
1


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Eigenspace for

λ = 2 :

 2 −4 1
1 −3 0
−2 4 −1

 7→
 1 −3 0

2 −4 1
0 0 0

 7→
 1 −3 0

0 2 1
0 0 0

 7→
 1 0 3

2
0 1 1

2
0 0 0

 ⇒ x = t

− 3
2
− 1

2
1


Since there are no three independent eigenvectors, C is not diagonalizable.

kD(x) =

∣∣∣∣∣∣
3− x 1 −3

0 1− x 0
2 1 −2− x

∣∣∣∣∣∣ = (1− x)

∣∣∣∣ 3− x −3
2 −2− x

∣∣∣∣ = −(x− 1)(x2 − x) = −(x− 1)2x,

so the eigenvalues are 1, 1, 0.
Eigenspace for

λ = 1 :

 2 1 −3
0 0 0
2 1 −3

 7→
 1 1

2 − 3
2

0 0 0
0 0 0

 ⇒ x1 = − 1
2s+ 3

2 t
x2 = s
x3 = t

, i.e. x =
s

2

−1
2
0

+
t

2

 3
0
2

 ,
so the basis of the eigenspace V1 is {(−1, 2, 0), (3, 0, 2) }.
Eigenspace for

λ = 0 :

 3 1 −3
0 1 0
2 1 −2

 7→
 3 0 −3

0 1 0
2 0 −2

 7→
 1 0 −1

0 1 0
0 0 0

 ⇒ x = t

 1
0
1


This means, that B = {(−1, 2, 0), (3, 0, 2), (1, 0, 1) } is a basis of R3 consisting of eigenvectors of D,
so the matrix D is diagonalizable. The diagonal form also shows that the transformation x 7→ Dx
maps every vector of the plane span(b1,b2) to itself, while it maps b3 to 0, so it is a projection on
the plane in the direction of b3.

11. Find the n’th power of the matrix A =

[
1 −2
−2 1

]
.

Solution: kA(x) =

∣∣∣∣ 1− x −2
−2 1− x

∣∣∣∣ = x2− 2x− 3 = (x− 3)(x+ 1), so the eigenvalues are 3 and −1.

Eigenspace for

λ = 3 :

[
−2 −2
−2 −2

]
7→

[
1 1
0 0

]
⇒ x = t

[
−1

1

]
Eigenspace for

λ = −1 :

[
2 −2
−2 2

]
7→

[
1 −1
0 0

]
⇒ x = t

[
1
1

]
So

A = PDP−1, where P =

[
−1 1

1 1

]
and D =

[
3 0
0 −1

]
and

An = PDnP−1 =

[
−1 1

1 1

] [
3n 0
0 (−1)n

]
1

2

[
−1 1

1 1

]
=

1

2

[
3n + (−1)n −3n + (−1)n

−3n + (−1)n 3n + (−1)n

]
12. What are the eigenvalues and eigenvectors of the following linear transformations?

a) Rotation of R3 by 90◦ about the z axis.
b) Projection of R2 on the line y = x in the direction of the vector (1, 0).
c) f : R2×2 → R2×2 mapping every matrix A to A+AT .
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Solution: a) The only eigenvectors are the ones parallel with the z axis, i.e. t(0, 0, 1) for t 6= 0,
with eigenvalue 1.

b) The eigenvectors are the nonzero multiples of (1, 1) with eigenvalue 1, and the nonzero multiples
of (1, 0) with eigenvalue 0.

c) Since A+AT is a symmetric matrix ((A+AT )T = AT +A = A+AT ), a matrix can only be an
eigenvector if either it is symmetric, or its image is 0, that is, AT = −A, which means that it is
antisymmetric. In the first case f(A) = A+AT = 2A, so the eigenvalue is 2, and the eigenspace

is V2 =

{[
a b
b c

] ∣∣∣ a, b, c ∈ R
}

= span

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
a 3-dimensional sub-

space of R2×2. In the second case the eigenvalue is 0, and V0 =

{[
0 a
−a 0

] ∣∣∣ a ∈ R
}

=

span

{[
0 1
−1 0

]}
is 1-dimensional.

Just for practice, calculate the eigenvalues and eigenspaces from the standard matrix of the
transformation. The standard basis is E = {E11, E12, E21, E22 }, and

f

([
a b
c d

])
=

[
a b
c d

]
+

[
a c
b d

]
=

[
2a b+ c
b+ c 2d

]
,

so for M = [f ]E

M


a
b
c
d

 =


2a
b+ c
b+ c
2d

 ⇒ M =


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2


Then |M − xI| = (2 − x)2(x2 − 2x) = (x − 2)3x ⇒ the eigenvalues are 2, 2, 2, 0 and the
eigenvectors for

λ = 2 :


0 0 0 0 | 0
0 −1 1 0 | 0
0 1 −1 0 | 0
0 0 0 0 | 0

 7→


0 1 −1 0 | 0
0 0 0 0 | 0
0 0 0 0 | 0
0 0 0 0 | 0

 ⇒ x =


s
t
t
u

 ,
so the basis of the eigenspace V2 is {E11, E12 + E21, E22 }, while for

λ = 0 :


2 0 0 0 | 0
0 1 1 0 | 0
0 1 1 0 | 0
0 0 0 2 | 0

 7→


1 0 0 0 | 0
0 1 1 0 | 0
0 0 0 1 | 0
0 0 0 0 | 0

 ⇒ x =


0
−t
t
0

 ,
so the basis of the eigenspace V0 is {−E12 + E21 }.

13. Show that every 3× 3 real matrix has an eigenvector.

Solution: The characteristic polynomial −x3 + a2x
2 + a1x + a0 must have at least one real root

(since its limit in −∞ is +∞, and in +∞ is −∞). So the matrix has a real eigenvalue λ, and for
the real eigenvalue we can find real eigenvectors by solving the system of equations (A− λI)x = 0
over R.

14. Prove that every eigenvector of A is an eigenvector of A2. Is the reverse statement true?

Solution: If v is an eigenvector for the eigenvalue λ, then A2v = A(Av) = A(λv) = λAv = λ2v.
The reverse statement is usually not true, for example the rotation of the plane about the origin
by 90◦ has no real eigenvector, while for its square every nonzero vector is an eigenvector.
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Euclidean spaces and their transformations

15. Write the vector b as the sum of a vector which is orthogonal to a and a vector which is parallel to
a if
a) a = (1,−2, 0, 1), b = (3, 1, 1, 1);
b) a = (1 + i, 1− i), b = (i, 3− i).

Solution: a) The component parallel with a is the orthogonal projection of b on a, which is b′ =
〈a,b〉
|a|2

a =
2

6
a =

(
1

3
,−2

3
, 0,

1

3

)
, and the component orthogonal to a is b− b′ =

(
8

3
,

5

3
, 1,

2

3

)
.

b) For the orthogonal projection b′ =
〈a,b〉
|a|2

a, we need 〈a,b〉 = (1− i)i+ (1 + i)(3− i) = 5 + 3i

and |a|2 = |1 + i|2 + |1 − i|2 = 12 + 12 + 12 + 12 = 4. So the component parallel with

a is b′ =
〈a,b〉
|a|2

a =
5 + 3i

4
a =

(
1

2
+ 2i, 2− 1

2
i

)
, and the component orthogonal to a is

b− b′ =

(
−1

2
− i, 1− 1

2
i

)
.

16. Prove that the subset {(x1, x2, x3, x4, x5) |x1 +x2 = x4 +x5 } is a hyperplane in R5, and determine
its normal vector. Calculate the reflection of (1, 0, 0, 0, 0) to this hyperplane.
Solution: The subset consists of those vectors x whose scalar product with (1, 1, 0,−1,−1) is
0, so it is the hyperplane with normal vector a = (1, 1, 0,−1,−1). We can obtain the reflection
of a vector v on the hyperplane as v − 2

|a|2 〈a,v〉a, so the reflection of v = (1, 0, 0, 0, 0) is w =

(1, 0, 0, 0, 0)− 2
4 (1, 1, 0,−1,−1) = (1

2 ,−
1
2 , 0,

1
2 ,

1
2 ).

Indeed, the connecting vector is v − w = ( 1
2 ,

1
2 , 0,−

1
2 ,−

1
2 ) is parallel to a, so it is perpendicular

to the hyperplane, and the midpoint of the connecting segment is 1
2 (v + w) = (3

4 ,−
1
4 , 0,

1
4 ,

1
4 ) is in

the hyperplane.

17. Give the standard matrix of the orthogonal projection and of the reflection on the hyperplane x +
y − z = 0 in R3.
Solution: The normal vector of the plane is (1, 1,−1), so the standard matrix of the orthogonal
projection is I − 1

|a|2 aa
∗, where a is the normal vector written as a column vector: 1 0 0

0 1 0
0 0 1

− 1

3

 1
1
−1

 [ 1 1 −1 ] =

 1 0 0
0 1 0
0 0 1

− 1

3

 1 1 −1
1 1 −1
−1 −1 1

 =
1

3

 2 −1 1
−1 2 1

1 1 2

 .
The standard matrix of the reflection is I − 2

|a|2 aa
∗: 1 0 0

0 1 0
0 0 1

− 2

3

 1 1 −1
1 1 −1
−1 −1 1

 =
1

3

 1 −2 2
−2 1 2

2 2 1


18. Find the standard matrix of a reflection which maps the vector (1, 2,−2) to (3, 0, 0). (Hint: It is

the reflection on the bisector plane of the line segment connecting the endpoints of the two vectors.)
Solution: The bisector plane has a normal vector (3, 0, 0) − (1, 2,−2) = (2,−2, 2), or its scalar
multiple, (1,−1, 1), and the plane contains the origin, since |(1, 2,−2)| = 3 = |(3, 0, 0)|. So it is a
hyperplane H(a) with a = [ 1 −1 1 ]

T . Thus the standard matrix of the reflection is 1 0 0
0 1 0
0 0 1

− 2

3

 1
−1

1

 [ 1 −1 1 ] =

 1 0 0
0 1 0
0 0 1

− 2

3

 1 −1 1
−1 1 −1

1 −1 1

 =
1

3

 1 2 −2
2 1 2
−2 2 1

 .
One can easily check that this transformation maps (1, 2,−2) to (3, 0, 0).
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19. Which of the following matrices are self-adjoint, unitary or normal?

A =

 1 1 1
1 0 1
1 1 1

 B =

 0 2 −1
−2 0 3

1 −3 0

 C =

[
i i
i −i

]
D =

[
2 1
3 2

]

E =

[
1 −1
−1 3

]
F =

[
−1 2 + i

2− i −5

]
G =

 1/3 −2/3 −2/3
2/3 2/3 −1/3
2/3 −1/3 2/3

 H =

[
1 i

1 + i 0

]
Solution: A, E, F are self-adjoint, G is unitary. B∗ = −B, so B∗B = BB∗, that is, B is normal.

C = i

[
1 1
1 −1

]
is a scalar multiple of a self-adjoint (so also normal) matrix, thus C is normal. (If

M is normal, then (cM)∗(cM) = |c|2M∗M = |c|2MM∗ = (cM)(cM)∗.) D and H are not even
normal, because D∗D 6= DD∗ and H∗H 6= HH∗.

Orthogonalization, QR decomposition

20. a) Orthogonalize the vectors b1 = (0, 1,−1, 0), b2 = (1, 1, 0,−1), b3 = (1, 2, 1, 0) in R4.
b) Orthogonalize the vectors b1 = (i, 1, 0) and b2 = (1 + i, 0, i) in C3, and then calculate the

orthogonal projection of v = (1, 0, 0) on the subspace span {b1,b2 }
Solution: a) c1 = (0, 1,−1, 0).

c2 = b2 − 〈 c1,b2 〉
|c1|2 c1 = (1, 1, 0,−1)− 1

2 (0, 1,−1, 0) = (1, 12 ,
1
2 ,−1).

Use the parallel c̃2 = (2, 1, 1,−2) instead.
c3 = b3 − 〈 c1,b3 〉

|c1|2 c1 − 〈 c̃2,b3 〉
|c̃2|2 c̃2 = (1, 2, 1, 0)− 1

2 (0, 1,−1, 0)− 5
10 (2, 1, 1,−2) = (0, 1, 1, 1).

So the corresponding orthogonal vectors are: (0, 1,−1, 0), (2, 1, 1,−2), (0, 1, 1, 1) and the or-
thonormal vectors are 1√

2
(0, 1,−1, 0), 1√

10
(2, 1, 1,−2), 1√

3
(0, 1, 1, 1).

b) c1 = (i, 1, 0),
c2 = (1 + i, 0, i) − −i(1+i)+1·0+0·i

12+12+02 (i, 1, 0) = (1 + i, 0, i) − 1−i
2 (i, 1, 0) = ( 1

2 + 1
2 i,−

1
2 + 1

2 i, i), or
we can take c̃2 = (1 + i,−1 + i, 2i) instead.
The projection of v on span {b1,b2 } = span { c1, c̃2 } is
〈v,c1 〉
|c1|2 c1 − 〈 c̃2,v 〉

|c̃2|2 c̃2 = −i
2 (i, 1, 0) + 1−i

8 (1 + i,−1 + i, 2i) =

( 1
2 ,−

1
2 i, 0) + ( 1

4 ,
1
4 i,

1
4 + 1

4 i) = (3
4 ,−

1
4 i,

1
4 + 1

4 i).

21. Find a best approximate solution to the inconsistent system below, using the normal equations. 1 2 −1
−1 1 1
−1 0 1

x =

 1
0
2


Solution:  1 −1 −1

2 1 0
−1 1 1

 1 2 −1 | 1
−1 1 1 | 0
−1 0 1 | 2

 =

 3 1 −3 | −1
1 5 −1 | 2
−3 −1 3 | 1

 7→
 1 5 −1 | 2

3 1 −3 | −1
0 0 0 | 0

 7→
 1 5 −1 | 2

0 −14 0 | −7
0 0 0 | 0

 1 0 −1 | − 1
2

0 1 0 | 1
2

0 0 0 | 0

 ⇒ x =

− 1
2 + t
1
2
t


This gives a best approximate solution for any t ∈ R, for instance, t = 0 gives x = (− 1

2 ,
1
2 , 0).

22. Prove that the normal system of equations ATAx = ATb is consistent for any system Ax = b.
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Solution: Let A ∈ Rm×n. We are going to prove that ImAT = ImATA, so any vector in ImAT ,
that is, any vector of the form ATb can be written as ATAx for some x.
It is clear that ImATA ≤ ImAT (since ATAx = AT (Ax)), so we only need to show that
dim ImATA = dim ImAT , or equivalently, rankATA = rankAT , and the latter is known to be
equal to rankA.

So it is enough to prove that rankATA = rankA. By the dimension theorem, rankATA = n −
dim KerATA, and rankA = n−dim KerA, so we only need to show that dim KerA = dim KerATA.
In fact, it is true that KerA = KerATA. Indeed, KerA ≤ KerATA, since Ax = 0 implies
ATAx = AT0 = 0, on the other hand, if ATAx = 0, then 0 = xTATAx = |Ax|2 ⇒ Ax = 0. This
finishes the proof.

23. Find the best approximate solution to the inconsistent system of equations below by first determining
the QR decomposition of the coefficient matrix.


1 0 5
0 −2 0
−1 4 3
−1 0 −1
−1 0 −1

x =


1
0
1
1
0


Solution: Let us determine the QR decomposition by using the Gram–Schmidt method for the
column vectors v1 = (1, 0,−1,−1,−1), v2 = (0,−2, 4, 0, 0), v3 = (5, 0, 3,−1,−1).
c1 = (1, 0,−1,−1,−1).
c2 = (0,−2, 4, 0, 0)− −44 (1, 0,−1,−1,−1) = (1,−2, 3,−1,−1)
c3 = (5, 0, 3,−1,−1)− 4

4 (1, 0,−1,−1,−1)− 16
16 (1,−2, 3,−1,−1) = (3, 2, 1, 1, 1).

Then the corresponding orthonormal vectors are:
q1 = 1

2 (1, 0,−1,−1,−1), q2 = 1
4 (1,−2, 3,−1,−1), q3 = 1

4 (3, 2, 1, 1, 1).
(When orthogonalizing for QR decomposition, make sure that, in case you modify the ci vectors
in the process, you only multiply them with positive scalars so that in the end you get an R with
positive diagonal elements.)
Then Q = [q1q2q3], and R = QTA, where A is the coefficient matrix.

Q =


1/2 1/4 3/4

0 −2/4 2/4
−1/2 3/4 1/4
−1/2 −1/4 1/4
−1/2 −1/4 1/4

 , so A = QR with

R = QTA =
1

4

 2 0 −2 −2 −2
1 −2 3 −1 −1
3 2 1 1 1




1 0 5
0 −2 0
−1 4 3
−1 0 −1
−1 0 −1

 =

 2 −2 2
0 4 4
0 0 4


The best approximate solution of the given system of equations is the solution of the equation
Rx = QTb:  2 −2 2 | −1/2

0 4 4 | 3/4
0 0 4 | 5/4

⇒ z = 5/16, y = −1/8, x = −11/16

24. Consider the vectors v1 = (1, 0,−1, 1), v2 = (1, 0, 0, 2), v3 = (0, 0, 1, 1) in R4. Give an orthogonal
basis of W = span {v1,v2,v3 } and of W⊥.
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Solution: Complete the set to v1,v2,v3, e1, e2, e3, e4, that is,

(1, 0,−1, 1), (1, 0, 0, 2), (0, 0, 1, 1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).

We get c1 = (1, 0,−1, 1),
c2 = (1, 0, 0, 2)− 3

3 (1, 0,−1, 1) = (0, 0, 1, 1),
c3 = (0, 0, 1, 1)− 0c1 − 2

2 (0, 0, 1, 1) = 0, so we discard this c3,
and we get an orthogonal basis {(1, 0,−1, 1), (0, 0, 1, 1) } of W . Continuing with the ei vectors we
get the new
c3 = (1, 0, 0, 0)− 1

3 (1, 0,−1, 1)− 0(0, 0, 1, 1) = (2
3 , 0,

1
3 ,−

1
3 ), or rather the parallel

c̃3 = (2, 0, 1,−1).
c4 = (0, 1, 0, 0)− 0(1, 0,−1, 1)− 0(0, 0, 1, 1)− 0(2, 0, 1,−1) = (0, 1, 0, 0).
This is the fourth nonzero orthogonal vector in R4, so this completes the basis, and thus
{(2, 0, 1,−1), (0, 1, 0, 0) } is an orthogonal basis of W⊥.
(Actually, we could have discarded v3 after seeing that it is the same as c2, and could have also
saved work by noticing that (0, 1, 0, 0) is orthogonal to all the previous vectors, but this solution
shows how the algorithm handles even the redundant vectors or the orthogonal ones.)

25. Use the reduced QR decomposition of the coefficient matrix A in problem 23 to construct the full
QR decomposition.
Solution: We have to complete the columns of Q, or more conveniently the corresponding orthog-
onal system c1, c2, c3 to an orthogonal basis of R5. Add as many as needed of e1, . . . , e5 until we
get two more extra nonzero orthogonal vectors, and then we normalize the new vectors as well.
c1 = (1, 0,−1,−1,−1)
c2 = (1,−2, 3,−1,−1)
c3 = (3, 2, 1, 1, 1)
c4 = (1, 0, 0, 0)− 1

4 (1, 0,−1,−1,−1)− 1
16 (1,−2, 3,−1,−1)− 3

16 (3, 2, 1, 1, 1) = ( 1
8 ,−

1
4 ,−

1
8 ,

1
8 ,

1
8 ), or

rather the parallel
c̃4 = (1,−2,−1, 1, 1).
We may notice that c1, c2, c3, c4 are all in the hyperplane x4 = x5. So to get a full basis of R5, we
have to add a vector outside this hyperplane, for instance, e4.
c5 = (0, 0, 0, 1, 0) + 1

4 (1, 0,−1,−1,−1) + 1
16 (1,−2, 3,−1,−1)− 1

16 (3, 2, 1, 1, 1)− 1
8 (1,−2,−1, 1, 1) =

(0, 0, 0, 12 ,−
1
2 ), or rather the parallel

c̃5 = (0, 0, 0, 1,−1).
(Actually this last one can also be obtained as the normal vector of the hyperplane x4 − x5 = 0,
because that is clearly orthogonal to the previous four vectors.)
By dividing the orthogonal vectors by their lengths, we get the columns of the orthogonal matrix
Q̂, and we complete R with the necessary number of zero rows.

1 0 5
0 −2 0
−1 4 3
−1 0 −1
−1 0 −1

 =


1/2 1/4 3/4 1/2

√
2 0

0 −2/4 2/4 −2/2
√

2 0
−1/2 3/4 1/4 −1/2

√
2 0

−1/2 −1/4 1/4 1/2
√

2 1/
√

2
−1/2 −1/4 1/4 1/2

√
2 −1/

√
2




2 −2 2
0 4 4
0 0 4
0 0 0
0 0 0


26. Determine the matrix of the Householder reflection and the Givens rotation mapping the vector

(−3, 0, 4) to (5, 0, 0).
Solution: The Householder-reflection will be across the hyperplane with normal vector (8, 0,−4),
or simpler, a = (2, 0,−1), and its matrix is

I − 2

|a|2

 2
0
−1

 [ 2 0 −1 ] =

 1 0 0
0 1 0
0 0 1

− 2

5

 4 0 −2
0 0 0
−2 0 1

 =

−3/5 0 4/5
0 1 0

4/5 0 3/5

 .
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The Givens rotation rotates the xz plane, and leaves the y axis fixed. Its matrix is−3/5 0 4/5
0 1 0

−4/5 0 −3/5

 .
27. Find the full QR decomposition of the matrix A by using Householder reflections, and use this to

give a reduced QR decomposition.

A =

 2 1
1 −2
2 −6


Solution: The first reflection must map (2, 1, 2) to (3, 0, 0), so it is a reflection across the hyperplane
with normal vector (1,−1,−2).

Q1A =
1

3

 2 1 2
1 2 −2
2 −2 −1

 2 1
1 −2
2 −6

 =

 3 −4
0 3
0 4


For the next transformation we must find first the reflection in R2, which maps the lower part of

the second column,
[

3
4

]
to
[

5
0

]
. Its matrix is

[
1 0
0 1

]
− 2

5

[
1 −2
−2 4

]
=

[
3/5 4/5
4/5 −3/5

]
, and Q2

will be the matrix which acts on the second and third coordinate as this matrix, while leaves the
first coordinate unchanged.

Q2 =

 1 0 0
0 3/5 4/5
0 4/5 −3/5

 , so Q2Q1A =
1

5

 5 0 0
0 3 4
0 4 −3

 3 −4
0 3
0 4

 =

 3 −4
0 5
0 0

 = R̂

So A = Q̂R̂, where Q̂ = QT
1Q

T
2 (= Q1Q2), and we get the reduced QR decomposition by cutting off

the last column(s) of Q̂ to the shape of A and the zero row(s) of R̂.

A =

 2 1
1 −2
2 −6

 =
1

15

 10 11 −2
5 −2 14

10 −10 −5

 3 −4
0 5
0 0

 =
1

15

 10 11
5 −2

10 −10

[ 3 −4
0 5

]

28. Determine the QR decomposition of the matrix A, using Givens rotations, and in the end, if nec-
essary, an extra reflection.

A =

 0 −1 1
3 3 0
4 4 −5


Solution: The first rotation will fix the first two elements of the first column: it takes (0, 3) to
(3, 0), while the third coordinat remains unchanged.

Q1A =

 0 1 0
−1 0 0

0 0 1

 0 −1 1
3 3 0
4 4 −5

 =

 3 3 0
0 1 −1
4 4 −5


Now we fix the first and third element of the first column: (3, 4) should go to (5, 0), while the
middle component remains unchanged.

Q2Q1A =
1

5

 3 0 4
0 5 0
−4 0 3

 3 3 0
0 1 −1
4 4 −5

 =

 5 5 −4
0 1 −1
0 0 −3


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Luckily, Q2Q1A is already an upper triangular matrix, so we do not have to work on the second
column. However, the last element of the diagonal is not positive so we add a reflection accross the
xy-plane.

Q3Q2Q1A =

 1 0 0
0 1 0
0 0 −1

 5 5 −4
0 1 −1
0 0 −3

 5 5 −4
0 1 −1
0 0 3

 = R̂.

So A = Q̂R̂, where Q̂ = QT
1Q

T
2Q

T
3 , which gives the decomposition

A =

 0 −1 1
3 3 0
4 4 −5

 =
1

5

 0 −5 0
3 0 4
4 0 −3

 5 5 −4
0 1 −1
0 0 3

 .
Pseudoinverse

29. a) Show that for any matrices A ∈ Km×n and B ∈ Kn×m the nonzero eigenvalues of AB ∈ Km×m

and BA ∈ Kn×n are the same.
b) Calculate the rank and eigenvalues of AAT and ATA for the matrix

A =

[
1 2 −1
0 1 1

]
.

Solution: a) Suppose 0 6= v ∈ Km is an eigenvector of AB for an eigenvalue λ 6= 0, that is,
ABv = λv. Then ABv 6= 0, and BA(Bv) = B(ABv) = Bλv = λBv, and Bv 6= 0, since
ABv 6= 0. This means that Bv is an eigenvector of BA with eigenvalue λ, so λ is also an
eigenvalue of BA. Switching the roles of A and B, we also get that all the nonzero eigenvalues
of BA are eigenvalues of AB.

b) We have seen that r(ATA) = r(A), so r(AAT ) = r(AT ) = r(A), so both ranks are r(A) = 2.
According to part a), the nonzero eigenvalues are the same for ATA and AAT , and the ranks
show that 0 is an eigenvalue of the 3 × 3 matrix, AAT but not an eigenvalue of ATA. Let’s
check this by caluclating both.

kATA(x) =

∣∣∣∣ 6− x 1
1 2− x

∣∣∣∣ = x2 − 8x+ 11, so the eigenvalues are 4±
√

5.

kAAT (x) =

∣∣∣∣∣∣
1− x 2 −1

2 5− x −1
−1 −1 2− x

∣∣∣∣∣∣ = −x3 + 8x2 − 11x = −x(x2 − 8x+ 11), so the eigenvalues

are 0 and 4±
√

5.

30. Determine the pseudoinverses of the following matrices.

[
1 1 0
0 1 1

]
,


1
1
1
1

 , [
1 1
2 2

]
,

 0 1 −1
2 1 1
1 1 0


Solution: If a matrix B is of full column rank then B+ = (BTB)−1BT , if a matrix C is of full row
rank then C+ = CT (CCT )−1. If A is not a full rank matrix then the rank factorization A = BC
yields a matrix B of full column rank and C of full row rank such that A+ = C+B+.

a) C =

[
1 1 0
0 1 1

]
is of full row rank, so C+ =

 1 0
1 1
0 1

[ 1 1 0
0 1 1

] 1 0
1 1
0 1

−1 =

 1 0
1 1
0 1

[ 2 1
1 2

]−1
=

 1 0
1 1
0 1

 1
3

[
2 −1
−1 2

]
= 1

3

 2 −1
1 1
−1 2

.
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b) C =


1
1
1
1

 is of full column rank, so C+ =

[ 1 1 1 1 ]


1
1
1
1



−1

[ 1 1 1 1 ] =

1
4 [ 1 1 1 1 ].

c) A =

[
1 1
2 2

]
7→
[

1 1
0 0

]
⇒ A = BC =

[
1
2

]
[ 1 1 ] ⇒

C+ =

[
1
1

](
[ 1 1 ]

[
1
1

])−1
=

1

2

[
1
1

]
, B+ =

(
[ 1 2 ]

[
1
2

])−1
[ 1 2 ] =

1

5
[ 1 2 ] ⇒

A+ = C+B+ =
1

10

[
1 2
1 2

]
.

d)

 0 1 −1
2 1 1
1 1 0

 7→
 1 1 0

0 1 −1
2 1 1

 7→
 1 0 1

0 1 −1
0 0 0

 ⇒ A = BC =

 0 1
2 1
1 1

[ 1 0 1
0 1 −1

]
⇒

C+ =

 1 0
0 1
1 −1

[ 1 0 1
0 1 −1

] 1 0
0 1
1 −1

−1 =

 1 0
0 1
1 −1

 1
3

[
2 1
1 2

]
= 1

3

 2 1
1 2
1 −1

,
B+ =

[ 0 2 1
1 1 1

] 0 1
2 1
1 1

−1[ 0 2 1
1 1 1

]
= 1

6

[
3 −3
−3 5

] [
1 0 1
0 1 1

]
= 1

6

[
−3 3 0

5 −1 2

]

⇒ A+ = C+B+ = 1
18

−1 5 2
7 1 4
−8 4 −2

 .
31. Use the pseudoinverse calculated in problem 30 to find the smallest, best approximate solution of

the system y − z = 1, 2x+ y + z = 1, x+ y = 0.
Solution: The coefficient matrix is the one in problem 30, part d.

A+b =
1

18

−1 5 2
7 1 4
−8 4 −2

 1
1
0

 =

 2/9
4/9
−2/9

 .
(One can check that A[ 29

4
9 −

2
9 ]T = 2

3 [1 1 1]T is indeed the orthogonal projection of (1,1,0) on the
column space of the coefficient matrix: it is in the column space, and (1, 1, 0)− 2

3 (1, 1, 1) = (1
3 ,

1
3 ,−

2
3 )

is orthogonal to all three columns of A.)

32. The proof of the theorem showed that if B ∈ Rm×r and C ∈ Rr×n are of rank r, then (BC)+ =
C+B+. Show that the statement is not true in general for products of real matrices.

For B =

[
1 1
1 1

]
and C =

[
1 2
0 1

]
, (BC)+ 6= C+B+

Solution: The rank factorization B =

[
1
1

]
[ 1 1 ] gives B+ = [ 1 1 ]

+

[
1
1

]+
= 1

2

[
1
1

]
1
2 [ 1 1 ] =

1
4

[
1 1
1 1

]
, and C+ = C−1 =

[
1 −2
0 1

]
, so C+B+ = 1

4

[
−1 −1

1 1

]
.

On the other hand, BC =

[
1 3
1 3

]
=

[
1
1

]
[ 1 3 ] ⇒ (BC)+ = 1

10

[
1
3

]
1
2 [ 1 1 ] = 1

20

[
1 1
3 3

]
.

Singular Value Decomposition
33. Determine the reduced and full SVD for the following matrices

A =

[
1 0
0 −2

]
B =

[
−1 −1
−1 −1

]
C =

[
1 2 0
0 −2 1

]



Applied algebra Exercises/16 2020, Fall semester

Solution: a) ATA = A2 =

[
1 0
0 4

]
⇒ λ1 = 4, λ2 = 1, σ1 = 2, σ2 = 1, Σ1 =

[
2 0
0 1

]
.

The unit eigenvectors of ATA are:

for λ = 4: v1 =

[
0
1

]
, for λ = 1: v2 =

[
1
0

]
⇒ V1 =

[
0 1
1 0

]
,

AV1 =

[
1 0
0 −2

] [
0 1
1 0

]
=

[
0 1
−2 0

]
⇒

U1 =

[
0 1
−1 0

]
, which we obtained by dividing the columns of AV1 by σ1 = 2 and σ2 = 1,

respectively (in the general case we would divide them by σ1, . . . , σr, where r = r(A)).

So A = U1Σ1V
T
1 =

[
0 1
−1 0

] [
2 0
0 1

] [
0 1
1 0

]
= UΣV T is both the reduced and the full SVD, since

A is an invertible square matrix.

b) BTB =

[
2 2
2 2

]
, kBTB(x) = x2− 4x, λ1 = 4, λ2 = 0, σ1 = 2 is the only singular value, r = 1,

Σ1 = [2]. Eigenvectors for λ1 = 4: t
[

1
1

]
, unit eigenvector: v1 = 1√

2

[
1
1

]
⇒ V1 = 1√

2

[
1
1

]
BV1 =

[
−1 −1
−1 −1

]
1√
2

[
1
1

]
=

[
−
√

2
−
√

2

]
⇒ U1 =

[
−
√

2/2
−
√

2/2

]
= 1√

2

[
−1
−1

]
.

So B = U1Σ1V
T
1 = 1√

2

[
−1
−1

]
[2] 1√

2
[ 1 1 ] is the reduced SVD.

We obtain the full SVD by extending U1 and V1 to orthogonal (square) matrices by adding extra
orthonormal columns, and extending Σ1 to Σ of size equal to the size of the original matrix by
adding extra zeros:

U = 1√
2

[
−1 1
−1 −1

]
, V = 1√

2

[
1 1
1 −1

]
, Σ =

[
2 0
0 0

]
.

B = UΣV T = 1√
2

[
−1 1
−1 −1

] [
2 0
0 0

]
1√
2

[
1 1
1 −1

]
is a full SVD.

c) CTC =

 1 2 0
2 8 −2
0 −2 1

, kCTC(x) = −x3 + 10x2 − 9x = −x(x− 9)(x− 1) ⇒

λ1 = 9, λ2 = 1, λ3 = 0, σ1 = 3, σ2 = 1, r = 2, Σ1 =

[
3 0
0 1

]
.

Eigenvectors for λ = 9:−8 2 0
2 −1 −2
0 −2 −8

 7→
 2 −1 −2

0 1 4
−8 2 0

 7→
 2 0 2

0 1 4
−8 0 −8

 7→
 1 0 1

0 1 4
0 0 0

 ⇒ t

−1
−4

1


for λ = 1:  0 2 0

2 7 −2
0 −2 0

 7→
 0 1 0

2 0 −2
0 0 0

 7→
 1 0 −1

0 1 0
0 0 0

 ⇒ t

 1
0
1

 . So

v1 =
1

3
√

2

−1
−4

1

, v2 =
1√
2

 1
0
1

, V1 =
1

3
√

2

−1 3
−4 0

1 3

, CV1 =
1√
2

[
−3 1

3 1

]
, U1 =

1√
2

[
−1 1

1 1

]

C =

[
1 2 0
0 −2 1

]
= U1Σ1V

T
1 = 1√

2

[
−1 1

1 1

] [
3 0
0 1

]
1

3
√
2

[
−1 −4 1

3 0 3

]
is a reduced SVD of C.

To get a full SVD, of the semiorthogonal matrices, we only have to complete V , since U1 is already
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orthogonal. We can do it, for instance, by adding the cross product of the two columns, 1
3 [−2 1 2]T

as a third column.

C =

[
1 2 0
0 −2 1

]
= UΣV T = 1√

2

[
−1 1

1 1

] [
3 0 0
0 1 0

]−1/3
√

2 −4/3
√

2 1/3
√

2
1/
√

2 0 1/
√

2
−2/3 1/3 2/3

 is a full

SVD of C.

Remark: The full SVD (and then the reduced SVD) of A and B can be obtained easier, if we use
the fact that these are symmetric matrices, so we can diagonalize them by an orthogonal matrix,
and then we only have to modify one of them to make the diagonal elements of the middle diagonal
matrix nonnegative:

A =

[
1 0
0 −2

]
= QDQ−1 =

[
0 1
1 0

] [
−2 0

0 1

] [
0 1
1 0

]−1
=

[
0 1
1 0

] [
2 0
0 1

] [
−1 0

0 1

] [
0 1
1 0

]T
=

[
0 1
1 0

] [
2 0
0 1

] [
0 −1
1 0

]
, where we obtained the columns of Q as an orthonormal eigenbasis

of A in the decreasing order of the absolute values of the eigenvalues. The modifying matrix
diag(±1, . . . ,±1) is orthogonal, so the new right side matrix will also be orthogonal.

As for C, it is somewhat easier to calculate the reduced SVD of CT , because in that case we only
have to find the eigenvalues and eigenvectors of the 2 × 2 matrix CCT , and then we get the SVD
of C as the transposed of the SVD of CT .

34. Calculate the pseudoinverse of B and C of problem 33 by using the reduced SVD.

Solution: B =

[
−1 −1
−1 −1

]
= U1Σ1V

T
1 = 1√

2

[
−1
−1

]
[2] 1√

2
[ 1 1 ] ⇒

B+ = V1Σ−11 UT
1 = 1√

2

[
1
1

]
[ 12 ] 1√

2
[−1 −1 ] = 1

4

[
−1 −1
−1 −1

]
.

C =

[
1 2 0
0 −2 1

]
= U1Σ1V

T
1 = 1√

2

[
−1 1

1 1

] [
3 0
0 1

]
1

3
√
2

[
−1 −4 1

3 0 3

]
⇒

C+ = V1Σ−11 UT
1 = 1

3
√
2

−1 3
−4 0

1 3

[ 1
3 0
0 1

]
1√
2

[
−1 1

1 1

]
= 1

18

 10 8
4 −4
8 10

 = 1
9

 5 4
2 −2
4 5


35. Find polar decompositions of the square matrices in problem 33.

Solution: The polar decomposition of A = UΣV T is A = (UΣUT )(UV T ).

A =

[
1 0
0 −2

]
=

([
0 1
−1 0

] [
2 0
0 1

] [
0 −1
1 0

])([
0 1
−1 0

] [
0 1
1 0

])
=

[
1 0
0 2

] [
1 0
0 −1

]
B =

[
−1 −1
−1 −1

]
=

(
1√
2

[
−1 1
−1 −1

] [
2 0
0 0

]
1√
2

[
−1 −1

1 −1

])(
1√
2

[
−1 1
−1 −1

]
1√
2

[
1 1
1 −1

])
=

[
1 1
1 1

] [
0 −1
−1 0

]
36. Find the best 1-rank approximation of the higher rank matrices of problem 33, using the reduced

SVD. Calculate the error of the approximation, that is, ||A−A(1)||.

Solution: A =

[
1 0
0 −2

]
=

[
0 1
−1 0

] [
2 0
0 1

] [
0 1
1 0

]
⇒

A(1) =

[
0
−1

]
[ 2 ] [ 0 1 ] =

[
0 0
0 −2

]
A−A(1) =

[
1 0
0 0

]
⇒ ‖A−A(1)‖ =

√
12 + 02 + 02 + 02 =

√
1 = 1.



Applied algebra Exercises/18 2020, Fall semester

C =

[
1 2 0
0 −2 1

]
= U1Σ1V

T
1 = 1√

2

[
−1 1

1 1

] [
3 0
0 1

]
1

3
√
2

[
−1 −4 1

3 0 3

]
⇒

C(1) = 1√
2

[
−1

1

]
[ 3 ] 1

3
√
2

[−1 −4 1 ] =

[
1/2 2 −1/2
−1/2 −2 1/2

]
C − C(1) =

[
1/2 0 1/2
1/2 0 1/2

]
⇒ ‖C − C(1)‖ =

√
1
4 + 1

4 + 1
4 + 1

4 = 1.

Jordan normal form

37. Is there a 3× 3 matrix over Q with minimal polynomial
a) x2 − 2; b) x2 + x?

Solution: a) If mA(x) = x2 − 2 = (x −
√

2)(x +
√

2), then the only eigenvalues of A are
√

2
and −

√
2. But then kA(x) = −(x −

√
2)a1(x +

√
2)a2 , where a1, a2 ≥ 1, and a1 + a2 = 3.

So kA(x) is either −m(x)(x −
√

2) = −(x2 − 2)(x −
√

2) = −x3 +
√

2x2 + 2x − 2
√

2 or
kA(x) = −m(x)(x+

√
2) = −(x2− 2)(x+

√
2) = −x3−

√
2x2− 2x+ 2

√
2, but neither of them

is in Q[x]. So there is no such matrix.
b) Since mA(x) = x2 + x = x(x + 1), the eigenvalues are 0 and −1. Furthermore, both of them

have multiplicity 1 in the minimal polinomial, so the matrix A is diagonalizable. This condition
is satisfied by an arbitrary diagonal matrix which has only 0s and −1s in its diagonal. Actually
every 3× 3 matrix with minimal polynomial x2 + x is similar to one of the diagonal matrices
with diagonal elements 0, 0,−1 or 0,−1,−1.

38. Suppose that A is a matrix over C such that Am = I for some m ≥ 1. Prove that A is diagonalizable.
Solution: Since A is a ‘root’ of the polynomial xm − 1, the minimal polynomial is a divisor of
xm− 1. But xm− 1 has m different roots in C (the m complex mth roots of unity), so the minimal
polynomial has no multiple roots. Thus the matrix A is diagonalizable.

39. Which of the following matrices are diagonalizable over C? Determine the Jordan normal form of
the matrices.

A =

−3 1 2
1 1 0
2 0 −1

 B =

 0 0 −2
1 0 3
0 1 0

 C =


1 1 1 1
0 2 1 0
0 0 3 1
0 0 0 4

 D =


0 0 0 0
−1 0 0 2

0 0 0 −1
0 0 0 0


Solution: The characteristic polynomial of the matrix A is −x3− 3x2 + 6x = −x(x+ 3

2 −
√
33
2 )(x+

3
2 +

√
33
2 ). A is diagonalizable because it has 3 different eigenvalues. The Jordan normal form in

this case is any of the diagonal matrices with the eigenvalues 0, − 3
2 +

√
33
2 and − 3

2 −
√
33
2 in its

diagonal, in some order.
kB(x) = −x3 + 3x − 2 = −(x − 1)2(x + 2), so the eigenvalues are 1 and −2. The eigenspace

corresponding to the eigenvalue 1 is the solution space of the equation (B − I)x = 0, but it is
1-dimensional, so the Jordan normal form has only one 1-block, whose size is 2, and one −2-block
of size 1.

B ∼

 1 1 0
0 1 0
0 0 −2


Since the Jordan normal form is not diagonal, the matrix is not diagonalizable.

C is a triangular matrix, so without any further calculation we can see that its eigenvalues
are the diagonal elements 1, 2, 3 and 4. Since C is a 4 × 4 matrix with four different eigenvalues,
C must be diagonalizable, and its Jordan normal form is the diagonal matrix with 1, 2, 3, 4 in the
diagonal.

kD(x) = x4, so 0 is the only eigenvalue. The Jordan normal form of D contains only Jordan
blocks corresponding to 0. The rank of D is 2, thus the eigenspace corresponding to 0 is 4− 2 = 2-
dimensional, consequently the Jordan normal form has only two Jordan blocks. D2 = 0, so the
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largest Jordan block is of size 2. Hence the Jordan normal form is the block diagonal matrix with

two diagonal blocks, each equal to
[

0 1
0 0

]
:

D ∼


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Since the Jordan form is not diagonal, D is not diagonalizable.

40. What is the maximal number of non-similar complex matrices satisfying the following conditions?
Give the Jordan normal form, the dimension of the eigenspaces and the minimal polinomial of the
matrix in each possible case.
a) k(x) = −x5(x+ 1)2, m(x) = x3(x+ 1);
b) k(x) = (x− 1)4x, and the eigenspace for the eigenvalue 1 is 2-dimensional.

Solution: a) We know from the characteristic polynomial that the Jordan normal form consists
of 0- and −1-blocks, the sum of the sizes of the former is 5, of the latter is 2. From the minimal
polynomial we can deduce that the largest 0-block is of size 3, and the largest −1-block has
size 1. So there are only two possibilities: the diagonal blocks of the Jordan normal form are: 0 1 0

0 0 1
0 0 0

, [ 0 ], [ 0 ], [−1 ], [−1 ] or

 0 1 0
0 0 1
0 0 0

, [ 0 1
0 0

]
, [−1 ] [−1 ]

The minimal polynomial was given, the dimension of the eigenspace for −1 is 2 (since there
are two Jordan (−1)-blocks), and for 0 it is 3 in the first case, and 2 in the second.

b) By the characteristic polynomial, the diagonal blocks of the Jordan normal form can only be
1-blocks and one 1 × 1 0-block. The sum of the sizes of the 1-blocks is 4, and we know by
the dimension of the eigenspace that there are exactly 2 1-blocks. So there are two possibilities: 1 1 0

0 1 1
0 0 1

, [ 1 ], [ 0 ] or
[

1 1
0 1

]
,
[

1 1
0 1

]
, [ 0 ]

Here the minimal polynomials are (x− 1)3x and (x− 1)2x, respectively.

41. Find two non-similar 7× 7 matrices which have the same minimal and characteristic polynomials,
and their eigenspaces also have the same dimension.
Solution: We can take the two Jordan-matrices, with diagonal blocks 0 1 0

0 0 1
0 0 0

,
 0 1 0

0 0 1
0 0 0

, [ 0 ], and

 0 1 0
0 0 1
0 0 0

, [ 0 1
0 0

]
,
[

0 1
0 0

]
.

In both cases 0 is the only eigenvalue, the minimal polynomial is x3, and the eigenspace is 3-
dimensional.

Applications of the Jordan normal form

41. Which of the following matrices are similar?

A =

 1 0 −1
0 1 2
0 0 2

 B =

 1 0 0
2 2 0
−1 0 1

 C =

 2 0 0
1 0 1
−1 −1 2

 D =

 1 1 1
1 1 1
2 2 2


Solution: The traces of all four matrices are 4, but the determinants of A,B.C are 2, while
detD = 0, so D is not similar to any of the others. The characteristic polynomials of A, B and C
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are −(x−1)2(x−2), so their Jordan normal form is either diagonal, or it consists of a 2×2 1-block
and a 1× 1 2-block. It is enough to check the dimension of the eigenspace for the eigenvalue 1 to
decide whether there are 2 or 1 1-blocks in the Jordan form.

A− I =

 0 0 −1
0 0 2
0 0 1

 B − I =

 0 0 0
2 1 0
−1 0 0

 C − I =

 1 0 0
1 −1 1
−1 −1 1


It is easy to see that r(A − I) = 1 and r(B − I) = r(C − I) = 2, so the eigenspace for 1 is
2-dimensional for A, and 1-dimensional for B and C. So the Jordan forms

A ∼

 1 0 0
0 1 0
0 0 2

 , B ∼

 1 1 0
0 1 0
0 0 2

 ∼ C,
show that B and C are similar, and A is not similar to them.

42. Determine the J10 for the Jordan matrix

J =

 2 1 0
0 2 1
0 0 2



Solution: J10 =

 210
(
10
1

)
29

(
10
2

)
28

0 210
(
10
1

)
29

0 0 210

 =

 210 10 · 29 45 · 28
0 210 10 · 29
0 0 210


43. Is lim

k→∞
Ak convergent for the following matrices?

a) A =

[
1 2
3 4

]
b) A =

[
3/5 4/5
−4/5 3/5

]
c) A =

[
0 1
−1 2

]
d) A =

 1 0 −1
0 1 2
0 0 1

2


Solution: a) kA(x) = x2 − 5x− 2 ⇒ λ1,2 = 5±

√
33

2 , and 5+
√
33

2 > 1, so ρ(A) > 1 ⇒ limAk is not
convergent.

b) This is an orthogonal matrix, so every eigenvalue has absolute value 1. But the characteristic
polynomial kA(x) = x2 − 6

5x + 1 shows that these eigenvalues are different from 1, so limAk

is not convergent.
c) kA(x) = x2 − 2x + 1 = (x − 1)2, so 1 is the only eigenvalue. However, the eigenspace is only

1-dimensional, so the Jordan form of A is
[

1 1
0 1

]
, containing a 1-block of size larger than 1,

so limAk is not convergent.
d) The eigenvalues of A are 1, 1, 12 , so ρ(A) ≤ 1. The only eigenvalue with absolute value 1 is

1 itself. Finally, r(A − I) = 1, so the eigenspace for 1 is 2-dimensional, showing that there
are two 1-blocks in the Jordan form, thus all the 1-blocks are of size 1. The three conditions
together imply that limAk is convergent.

Nonnegative matrices

44. Which of the following matrices are irreducible, primitive, or stochastic?
0 0 1 0
0 0 2 0
1 3 0 2
0 0 1 0




0 0 1/4 0
0 0 1/4 0
1 1 1/4 1
0 0 1/4 0




0 0 5 0
1 1 1 1
0 0 2 0
0 0 1 0

 1
2 ·


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1




0 0 0 3
1 0 0 0
0 2 0 0
0 1 1 0


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Solution: All of the five matrices are nonnegative but only the the second and the fourth are
stochastic because there the sum of the elements in each column is 1. To determine whether they
are irreducible or stochastic, we need to draw the graphs associated to the matrices.
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Recall that a nonnegative matrix is irreducible if and only if the corresponding graph is stronly
connected. And the matrix is primitive if it is irreducible, and the greatest common divisor of the
lengthes of the cycles in the graph is 1.

The first graph is strongly connected: one can go from each point to each point (even to itself)
through 3. So the matrix is irreducible. But it is not primitive because every cycle is even.

The second graph has an extra loop compared to the first. So the matrix is still irreducible, and
also primitive because it has a cycle of length 1.

The third is not irreducible since one cannot go from 3 to any other point. Consequently, it is not
primitiv, either.

The fourth is disconnected, so the matrix is not irreducible and not primitive.

The fifth is irreducible since one can go from any point to any point along the cycle 4–3–2–1–4.
Furthermore, it has cycles of length 4 and 3, so the greatest common divisor of the cycle lengthes
is 1. Thus the fifth matrix is also primitive.

45. There is a flea on the number line, at first positioned randomly on any of the points 1, 2, 3 or 4.
The flea changes its position in every second, always jumping to one of these four points. If it is
on point 1 or 4 then it jumps to distance 1 with probability 2

3 , and to distance 2 with probability 1
3 .

If it is on 2 or 3 then it jumps to one of the neighbouring numbers, each with probability 1
2 . What

is the limit of the distribution of the position of the flea?
Solution: The transition matrix for the distribution of the position of the flea is

A =


0 1

2 0 0
2
3 0 1

2
1
3

1
3

1
2 0 2

3
0 0 1

2 0


The graph associated to this matrix is:
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This shows that the matrix is irreducible, since one can go to any point to any point along the cycle
1–3–4–2–1, and it is also primitive because it has cycles of length 3 and 2 (for example, 2–3–4–2
and 2–1–2).

It is easy to show that the theorem about the convergence of positive stochastic matrices also holds
for primitive stochastic matrices. So lim

k→∞
Ak 1

41 exists, and it is the only stochastic vector in the
1-dimensional eigenspace for eigenvalue 1. What remains is calculating this eigenvector.

A− I =


−1 1

2 0 0
2
3 −1 1

2
1
3

1
3

1
2 −1 2

3
0 0 1

2 −1

 7→

−1 1

2 0 0
0 − 2

3
1
2

1
3

0 2
3 −1 2

3
0 0 1

2 −1

 7→

−1 1

2 0 0
0 − 2

3
1
2

1
3

0 0 − 1
2 1

0 0 0 0

 7→
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−1 1

2 0 0
0 − 2

3 0 4
3

0 0 1 −2
0 0 0 0

 7→


1 − 1
2 0 0

0 1 0 −2
0 0 1 −2
0 0 0 0

 7→


1 0 0 −1
0 1 0 −2
0 0 1 −2
0 0 0 0

 ⇒ x = t


1
2
2
1


This eigenvector is a stochastic vector if 6t = 1, so the limit is

1/6
2/6
2/6
1/6

 .


