1. Find the nonzero terms in the big formula of $\operatorname{det}(A)$ (out of the 24). What are their signs?

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 3 & 4 & 0 \\
5 & 6 & 0 & 7 \\
8 & 0 & 0 & 9
\end{array}\right]
$$

2. True or false?
(i) If the main diagonal entries of a matrix are all 0 then the determinant is 0 .
(ii) If $|A|=0=|B|$ then $|A+B|=0$.
(iii) If $|A|=0=|B|$ then $|A B|=0$.
(iv) If $|A|=0$ then there is an entry of A which is 0 .
(v) If $|A|>0$ then there is an entry of A which is positive.
3. Write recursive formulas for $a_{n}=\left|A_{n}\right|, b_{n}=\left|B_{n}\right|$ and $c_{n}=\left|C_{n}\right|$ and determine their values.
$A_{n}=\left[\begin{array}{rrrrr}2 & -1 & 0 & \ldots & 0 \\ -1 & 2 & -1 & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & -1 & 2 & -1 \\ 0 & \ldots & 0 & -1 & 2\end{array}\right] ; B_{n}=\left[\begin{array}{rrrrr}1 & -1 & 0 & \ldots & 0 \\ -1 & 2 & -1 & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & -1 & 2 & -1 \\ 0 & \ldots & 0 & -1 & 2\end{array}\right] ; C_{n}=\left[\begin{array}{rrrrr}1 & -1 & 0 & \ldots & 0 \\ 1 & 1 & -1 & \ddots & 0 \\ 0 & \ddots & \ddots & \ddots & 0 \\ 0 & \ddots & 1 & 1 & -1 \\ 0 & \ldots & 0 & 1 & 1\end{array}\right]$.
4. Find all the cofactors of A_{3} of the previous exercise. Form the cofactor matrix, the adjugate matrix and A_{3}^{-1}.
5. Use Cramer's Rule to solve $\begin{aligned} x+2 y & =1 \\ 2 x+\quad y & =3\end{aligned}$.
6. a) Determine the volume of the tetrahedron (inscribed into the unit cube) with vertices: $(0 ; 0 ; 0)$, $(1 ; 1 ; 0),(1 ; 0 ; 1),(0 ; 1 ; 1)$. b)HW Let $P=(2 ; 1), Q=(7 ; 2), R=(-1 ; 8)$ and $S=(0 ; 9)$. Determine the area of the triangle $P Q R$ and of the quadrangle $P Q S R$.
7. Argue that the area of a triangle that has integer lattice point coordinates is an integer multiple of $1 / 2$ and the volume of a tetrahedron that has integer lattice point coordinates is an integer multiple of $1 / 6$.
8. Suppose A has orthonormal columns. Using $A^{T} A$ justify that $\operatorname{det}(A)= \pm 1$.
9. Rearranging the three vectors, which of the triple products (\times). are the same as $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$?
10. A point \mathbf{u} in space is the position of the mass on which a force \mathbf{F} acts (also a 3-dimensional vector). Observe that if \mathbf{u} and \mathbf{F} are parallel then there is no turning. However if they are not parallel then there is. The rotational force, the torque is exactly $\mathbf{u} \times \mathbf{F}$. Check that the direction is correct.
11. Given a matrix your friend picks a row. You win if you can change at most one element of that row to make the determinant 0 . Can you always win?
12. Let $A=\left[\begin{array}{rr}1 & -2 \\ -3 & 6\end{array}\right]$. Determine the eigenvalues and corresponding eigenvectors of A and of $A+I$.
13. Determine the eigenvalues and corresponding eigenvectors of $B=\left[\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right]$, of B^{2} and of B^{-1}.
14. Explain the general phenomena governing the previous two exercises.
