- 1. Find the nonzero terms in the big formula of det(A) (out of the 24). What are their signs?
- **2.** True or false?
- (i) If the main diagonal entries of a matrix are all 0 then the determinant is 0.
- (ii) If |A| = 0 = |B| then |A + B| = 0.
- (iii) If |A| = 0 = |B| then |AB| = 0.
- (iv) If |A| = 0 then there is an entry of A which is 0.
- (v) If |A| > 0 then there is an entry of A which is positive.
 - **3.** Write recursive formulas for $a_n = |A_n|$, $b_n = |B_n|$ and $c_n = |C_n|$ and determine their values.

	2	-1	0		0		1	-1	0		0		1	-1	0		0]
	-1	2	-1	·	0		-1	2	-1	·.	0		1	1	-1	·.	0	
$A_n =$	0	·	·	۰.	0	; $B_n =$	0	·	·	·	0	; $C_n =$	0	۰.	·	·	0	.
	0	·	-1	2	-1		0	·	-1	2	-1		0	·	1	1	-1	
	0		0	-1	2		0		0	-1	2		0		0	1	1	

4. Find all the cofactors of A_3 of the previous exercise. Form the cofactor matrix, the adjugate matrix and A_3^{-1} .

5. Use Cramer's Rule to solve
$$\begin{array}{cc} x+&2y&=1\\ 2x+&y&=3 \end{array}$$
.

6. a) Determine the volume of the tetrahedron (inscribed into the unit cube) with vertices: (0;0;0), (1;1;0), (1;0;1), (0;1;1). b)**HW** Let P = (2;1), Q = (7;2), R = (-1;8) and S = (0;9). Determine the area of the triangle PQR and of the quadrangle PQSR.

7. Argue that the area of a triangle that has integer lattice point coordinates is an integer multiple of 1/2 and the volume of a tetrahedron that has integer lattice point coordinates is an integer multiple of 1/6.

8. Suppose A has orthonormal columns. Using $A^T A$ justify that $det(A) = \pm 1$.

9. Rearranging the three vectors, which of the triple products $(\times) \cdot$ are the same as $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$?

10. A point **u** in space is the position of the mass on which a force **F** acts (also a 3-dimensional vector). Observe that if **u** and **F** are parallel then there is no turning. However if they are not parallel then there is. The rotational force, the torque is exactly $\mathbf{u} \times \mathbf{F}$. Check that the direction is correct.

11. Given a matrix your friend picks a row. You win if you can change at most one element of that row to make the determinant 0. Can you always win?

12. Let $A = \begin{bmatrix} 1 & -2 \\ -3 & 6 \end{bmatrix}$. Determine the eigenvalues and corresponding eigenvectors of A and of A + I.

13. Determine the eigenvalues and corresponding eigenvectors of $B = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$, of B^2 and of B^{-1} .

14. Explain the general phenomena governing the previous two exercises.

	[1]	0	0	2	
Λ	0	3	4	0	
$A \equiv$	5	6	0	$\overline{7}$	
	8	0	0	9	