1. Determine the polar form of $1-3 i$. What is $(1 /(1-3 i))^{2}+(1 /(1+3 i))^{2}$?
2. Let $z, w \in \mathbb{C}$ such that $|z|=5,|w|=3$. What is $|z w|,|z / w|,|z+w|,|z-w|$? If some cannot be determined exactly then give lower and upper bounds for them.
3. True or false?
(i) Every complex number has a square root.
(ii) Every complex number has a 100 -th root.
(iii) If a complex number is not real then its square root is not real.
(iv) If a complex number is purely imaginary then its square root is purely imaginary.
(v) The square root(s) of a negative real number are purely imaginary.
4. Find the eigenvalues and eigenvectors of the following rank 1 matrices:

$$
A=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\left[\begin{array}{lll}
3 & -2 & 0
\end{array}\right]=\left[\begin{array}{rrr}
0 & 0 & 0 \\
3 & -2 & 0 \\
6 & -4 & 0
\end{array}\right] ; \quad B=\left[\begin{array}{r}
1 \\
\pi \\
-\pi
\end{array}\right]\left[\begin{array}{lll}
\sqrt{2} & -1 & -1
\end{array}\right] ; \quad C=\frac{\mathbf{x y}^{T}}{\mathbf{x}^{T} \mathbf{y}} .
$$

5. Simon says: "every triangular matrix has its eigenvalues on the diagonal." Is he right?
6. HW Find four independent eigenvectors of D and thus diagonalise it!

$$
D=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

7. Find the eigenvalues of the following permutation matrix:

$$
P=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

8. Suppose $A X=X \Lambda$ with X invertible. Which is true?
(i) If X is triangular then A is triangular.
(ii) If A is triangular then X is triangular.
(iii) The columns of $\left(X^{-1}\right)^{T}$ are eigenvectors of A^{T}.
9. Let $g_{0}=0$ and $g_{1}=1$. For $n>1$ define $g_{n}=\frac{g_{n-1}+g_{n-2}}{2}$. (This sequence of consecutive means is sometimes called "Gibonacci" series.) Using matrices determine a formula for g_{n} and show that $g_{n} \rightarrow 2 / 3$.
10. Diagonalise A to $X^{-1} A X=\Lambda$ and determine the limits $\Lambda^{n} \rightarrow \Lambda^{\infty}$ and $A^{n} \rightarrow A^{\infty}$.

$$
A=\left[\begin{array}{rrr}
0 & 0.2 & 0.4 \\
0.3 & 0.4 & 0.5 \\
0.7 & 0.4 & 0.1
\end{array}\right]
$$

