1. Determine the eigenvalues and an orthonormal set of eigenvectors of S and write it $S=Q \Lambda Q^{T}$.

$$
S=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right] .
$$

2. Find the/a Schur decomposition of

$$
B=\left[\begin{array}{rr}
2 & -1 \\
1 & 4
\end{array}\right]
$$

3. True or false?
(i) If A has n orthogonal eigenvectors then it has n orthonormal eigenvectors.
(ii) If A is real 2×2 and its determinant is negative then A has a positive and a negative pivot.
(iii) If A is real 2×2, its determinant is negative and has two orthonormal eigenvectors then A has a positive and a negative pivot.
(iv) If A is symmetric and $A^{100}=0$ then $A=0$.
4. Find an a so that the following matrix has a negative eigenvalue.

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & a \\
1 & a & 2
\end{array}\right]
$$

How many negative eigenvalues can A have? What are the signs of the pivots? What are the signs of the LPM's?
5. Simon says: "If A is symmetric then $N(A)$ and $C(A)$ are orthogonal subspaces." Is he right? Why? He also says: "No positive definite matrix has a 0 on the main diagonal!" Is he right now? Why?
6. HW Find all orthogonal matrices that diagonlise

$$
A=\left[\begin{array}{rr}
31 & -8 \\
-8 & 19
\end{array}\right] ?
$$

7. Show that if a and b are chosen so that A and B are Positive Definite then C is also Positive Definite.

$$
A=\left[\begin{array}{cc}
1 & 3 \\
3 & a
\end{array}\right] ; \quad B=\left[\begin{array}{cc}
4 & b \\
b & 6
\end{array}\right] ; \quad C=\left[\begin{array}{cc}
a & b \\
b & a
\end{array}\right] .
$$

Determine the decomposition $C=L D L^{T}$ if $a=25$ and $b=20$. Use it to find M such that $C=M^{T} M$ (Cholesky factorisation).
8. Let

$$
S=\left[\begin{array}{rr}
\cos \vartheta & -\sin \vartheta \\
\sin \vartheta & \cos \vartheta
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 6
\end{array}\right]\left[\begin{array}{rr}
\cos \vartheta & \sin \vartheta \\
-\sin \vartheta & \cos \vartheta
\end{array}\right] .
$$

What is the determinant of S, what are the eigenvalues and eigenvectors of S ? Is S Positive Definite?
9. Find the singular values and the SVD of $A=\left[\begin{array}{rr}-1 & 2 \\ 2 & -4\end{array}\right]$. What are the eigenvalues of A ?
10. What are the singular values and the SVD of the matrix $B=\left[\begin{array}{lll}1 & 2 & -3\end{array}\right]$?

