1. Determine the eigenvalues and the singular values of A and B, where $\varepsilon=0.001$. Comment on how do they change when we alter the lower left corner by the tiny ε ?

$$
A=\left[\begin{array}{rr}
0 & 10 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{rr}
0 & 10 \\
\varepsilon & 0
\end{array}\right] .
$$

2. Determine the matrix for each of the following linear transformations:
(i) reflection through the x axis;
(ii) reflection through the origin;
(iii) rotation by 60° (in positive direction);
(iv) orthogonal projection onto the line $x=y$.
3. True or false?
(i) If $A=\left(a_{i j}\right)_{i, j}$ then $\operatorname{tr}\left(A^{T} A\right)=\sum_{i, j} a_{i j}^{2}$.
(ii) If A is 2×2 and has two eigenvalues ± 1 then its singular values are $\sigma_{1}=\sigma_{2}=1$.
(iii) If A has no 0 singular value then $A A^{T}$ or $A^{T} A$ is invertible.
(iv) If A is symmetric then its singular values are equal to the absolute values of its eigenvalues.
(v) If A is orthogonal then its singular values are all 1 .
4. Find the SVD of the following matrix:

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1.5 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

5. Simon says: "If $A^{T} A$ is diagonal then it is easy to obtain the SVD!" Really, how?
6. HW Determine the reduced SVD and the pseudoinverse of

$$
A=\left[\begin{array}{rrr}
2 & 0 & 1 \\
0 & 2 & -2
\end{array}\right] .
$$

7. Suppose A has full column rank. Explain why $A^{T} A$ is invertible. Show that $B=\left(A^{T} A\right)^{-1} A^{T}$ is a left inverse of A, that is $B A=I$. Explain this in terms of the four subspaces. Explain also that $B=A^{+}$.
8. Based on the previous exercise what is the pseudoinverse of A if A has full row rank?
9. Find the pseudoinverse of the following 3 matrices using the previous two exercises or/and the SVD method.

$$
A=\left[\begin{array}{r}
1 \\
-3
\end{array}\right] ; \quad B=\left[\begin{array}{ll}
1 & 2
\end{array}\right] ; \quad C=A B=\left[\begin{array}{rr}
1 & 2 \\
-3 & -6
\end{array}\right] .
$$

Confirm that $(A B)^{+}=B^{+} A^{+}$. (This is always true if A is of maximal column rank and B is of maximal row rank. Such factorisation is called "full rank factorisation.")
10. Let T be the linear transformation of \mathbb{R}^{3} defined by circular motion: $T((a, b, c))=(b, c, a)$. What is $T^{2}(\mathbf{v})=T(T(\mathbf{v}))$? What is T^{3} and T^{100} doing on \mathbb{R}^{3} ?
11. (Hard) Given $A x=b, 3$ equations in 2 variables, is like giving a triangle on the plane. Describe the point $A^{+} b$ (the minimum norm least square solution) in terms of the geometry of the triangle. (You can assume that in each equation the sumsquares of the coefficients is 1.)

