1. True or false?
(i) Vectors are dependent if their dot product is 0 .
(ii) If the linear combinations of \mathbf{v} and \mathbf{w} form a plane then \mathbf{v} and \mathbf{w} are independent.
(iii) $2 \mathbf{v}$ is always longer than \mathbf{v}.
(iv) $\mathbf{a}-\mathbf{b}$ is the same as $\mathbf{a}+(-\mathbf{b})$.
(v) \mathbf{v} and \mathbf{w} are on a common line through the origin (called collinear) if and only if $\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{\mathbf{w}}{\|\mathbf{w}\|}$.
(vi) Any vector is a matrix.
2. Let

$$
\mathbf{a}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \mathbf{c}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \mathbf{d}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] .
$$

Describe algebraically and geometrically the linear combinations of \mathbf{b} and \mathbf{c}. Describe also the linear combinations of \mathbf{a} and \mathbf{b}. Which of \mathbf{c}, \mathbf{d} can be expressed using \mathbf{a} and \mathbf{b} ?

Determine the subsets of $\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\}$ that are independent.
3. Let a clock have unit radius and let $\mathbf{a}_{1}, \ldots \mathbf{a}_{12}$ denote the twelve vectors pointing from the centre of the clock (the origin) to the twelve round hours. Determine the entries of $\mathbf{a}_{1}, \mathbf{a}_{4}$ and \mathbf{a}_{9}. What is the sum $\mathbf{a}_{1}+\mathbf{a}_{2}+\cdots+\mathbf{a}_{12}$? What is the sum $\mathbf{a}_{1}+\mathbf{a}_{5}+\mathbf{a}_{9}$?
4. Find two vectors \mathbf{a}, \mathbf{b} that are perpendicular to $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and to each other! HW with $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$.
5. Show these properties of the dot product:
(i) $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$;
(ii) $\mathbf{v} \cdot(\mathbf{w}+\mathbf{u})=\mathbf{v} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{u}$;
(iii) $(\mathbf{v}+\mathbf{w}) \cdot \mathbf{u}=\mathbf{v} \cdot \mathbf{u}+\mathbf{w} \cdot \mathbf{u}$.
6. Let $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Compute the real number(s$) c$ for which $\mathbf{w}-c \mathbf{v}$ is perpendicular to \mathbf{v}. Can you do it for arbitrary \mathbf{v} and \mathbf{w} ?
7. Using Pythagoras' Theorem, prove the triangle inequality $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$.
8. How many vectors can you find on the plane/space such that every pair has negative dot product?
9. To every space vector \mathbf{v} there corresponds a plane $P_{\mathbf{v}}$ consisting of the vectors perpendicular to $\mathbf{v}: P_{\mathbf{v}}=\{\mathbf{w} \mid \mathbf{w} \cdot \mathbf{v}=0\}$. Describe the possible configurations of the planes corresponding to three independent vectors. Similarly, describe the possible configurations of the planes corresponding to three dependent vectors.
10. To every plane P (not necessarily containing the origin!) in the space there corresponds a (nonunique) vector $\mathbf{v}_{P} \neq \mathbf{0}$ perpendicular to $P: \mathbf{v}_{P} \cdot\left(\mathbf{w}_{1}-\mathbf{w}_{2}\right)=0$ for all $\mathbf{w}_{1}, \mathbf{w}_{2} \in P$. Describe the configurations of three planes when the corresponding three vectors are independent and when they are dependent.

