Vector and Matrix Algebra

Problem sheet 1

- **1.** True or false?
- (i) Vectors are dependent if their dot product is 0.
- (ii) If the linear combinations of \mathbf{v} and \mathbf{w} form a plane then \mathbf{v} and \mathbf{w} are independent.
- (iii) $2\mathbf{v}$ is always longer than \mathbf{v} .
- (iv) $\mathbf{a} \mathbf{b}$ is the same as $\mathbf{a} + (-\mathbf{b})$.
- (v) **v** and **w** are on a common line through the origin (called collinear) if and only if $\frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$.
- (vi) Any vector is a matrix.
 - **2.** Let

$$\mathbf{a} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \ \mathbf{d} = \begin{bmatrix} 1\\2\\1 \end{bmatrix}.$$

Describe algebraically and geometrically the linear combinations of \mathbf{b} and \mathbf{c} . Describe also the linear combinations of \mathbf{a} and \mathbf{b} . Which of \mathbf{c} , \mathbf{d} can be expressed using \mathbf{a} and \mathbf{b} ?

Determine the subsets of $\{a, b, c, d\}$ that are independent.

3. Let a clock have unit radius and let $\mathbf{a}_1, \ldots, \mathbf{a}_{12}$ denote the twelve vectors pointing from the centre of the clock (the origin) to the twelve round hours. Determine the entries of \mathbf{a}_1 , \mathbf{a}_4 and \mathbf{a}_9 . What is the sum $\mathbf{a}_1 + \mathbf{a}_2 + \cdots + \mathbf{a}_{12}$? What is the sum $\mathbf{a}_1 + \mathbf{a}_5 + \mathbf{a}_9$?

4. Find two vectors **a**, **b** that are perpendicular to $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$ and to each other! **HW** with $\begin{bmatrix} 1\\-1\\1 \end{bmatrix}$.

- 5. Show these properties of the dot product:
- (i) $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v};$
- (ii) $\mathbf{v} \cdot (\mathbf{w} + \mathbf{u}) = \mathbf{v} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{u};$
- (iii) $(\mathbf{v} + \mathbf{w}) \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{u}.$

6. Let $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Compute the real number(s) c for which $\mathbf{w} - c\mathbf{v}$ is perpendicular to \mathbf{v} . Can you do it for arbitrary \mathbf{v} and \mathbf{w} ?

7. Using Pythagoras' Theorem, prove the triangle inequality $||\mathbf{v} + \mathbf{w}|| \le ||\mathbf{v}|| + ||\mathbf{w}||$.

8. How many vectors can you find on the plane/space such that every pair has negative dot product?

9. To every space vector \mathbf{v} there corresponds a plane $P_{\mathbf{v}}$ consisting of the vectors perpendicular to \mathbf{v} : $P_{\mathbf{v}} = {\mathbf{w} | \mathbf{w} \cdot \mathbf{v} = 0}$. Describe the possible configurations of the planes corresponding to three independent vectors. Similarly, describe the possible configurations of the planes corresponding to three dependent vectors.

10. To every plane P (not necessarily containing the origin!) in the space there corresponds a (nonunique) vector $\mathbf{v}_P \neq \mathbf{0}$ perpendicular to $P: \mathbf{v}_P \cdot (\mathbf{w}_1 - \mathbf{w}_2) = 0$ for all $\mathbf{w}_1, \mathbf{w}_2 \in P$. Describe the configurations of three planes when the corresponding three vectors are independent and when they are dependent.