Problem sheet 2

1. Let \mathbf{v}, \mathbf{w} be two independent vectors on the plane or in higher dimension. What is the set $L = \{\lambda \mathbf{v} + \mu \mathbf{w} \mid \lambda, \mu \text{ integers}\}$? What is the set $K = \{\lambda \mathbf{v} + \mu \mathbf{w} \mid \lambda, \mu > 0\}$?

- **2.** True or false?
- (i) When solving a system of linear equations pivots are always positive.
- (ii) If a system has two solutions then it has more.
- (iii) The triangle inequality is always strict: $||\mathbf{v}|| + ||\mathbf{w}|| > ||\mathbf{v} \mathbf{w}||$.
 - **3.** Multiply A times \mathbf{x} to find the components of $A\mathbf{x}$ in each case:

$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \end{bmatrix}$	[0 1]
$\left \begin{array}{c c} 0 & 1 & 0 \end{array} \right y$	$\begin{vmatrix} 2 & 2 & 2 \end{vmatrix} \begin{vmatrix} y \end{vmatrix}$	$\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$
$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} z \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} z \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} y \end{bmatrix}$

What should be **b** so that $A\mathbf{x} = \mathbf{b}$ is solvable?

4. Given two vectors **a** and **b** and a real parameter t we have $||(\mathbf{a} - t\mathbf{b})|| \ge 0$. Take the square, decompose and you obtain an inequality, quadratic in t. Using the discriminant method deduce the Cauchy-Schwarz-Bunyakovsky inequality.

5. Consider the following system of linear equations:

Interpret the planes and their intersection lines. Describe all the solutions of the system.

6. Consider the following two systems of linear equations (*c* a real parameter):

x-	y+	z	= 1	x-	y+	z	= 1
x-	2y-	z	= -2	2x-	2y-	z	= -1
2x-	3y+	cz	= 1.	2x+	cy+	z	= 3.

How does the number of solutions depend on c in each system?

7. HW Apply elimination with circling the pivots of the system. Name and describe the elimination matrices!

Solve by back(ward) substitution.

8. Construct a 3×3 system that needs two row exchanges to reach a triangular form.

9. Suppose the first two columns are the same. What happens during elimination?

10. For which numbers a does elimination stop before reaching a full triangle in

$$\begin{bmatrix} a & 1 \\ a & a \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} a & 2 & 3 \\ a & a & 4 \\ a & a & a \end{bmatrix}?$$