1. Let \mathbf{v}, \mathbf{w} be two independent vectors on the plane or in higher dimension. What is the set $L=\{\lambda \mathbf{v}+\mu \mathbf{w} \mid \lambda, \mu$ integers $\}$? What is the set $K=\{\lambda \mathbf{v}+\mu \mathbf{w} \mid \lambda, \mu>0\}$?
2. True or false?
(i) When solving a system of linear equations pivots are always positive.
(ii) If a system has two solutions then it has more.
(iii) The triangle inequality is always strict: $\|\mathbf{v}\|+\|\mathbf{w}\|>\|\mathbf{v}-\mathbf{w}\|$.
3. Multiply A times \mathbf{x} to find the components of $A \mathbf{x}$ in each case:

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 1 \\
2 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

What should be \mathbf{b} so that $A \mathbf{x}=\mathbf{b}$ is solvable?
4. Given two vectors a and \mathbf{b} and a real parameter t we have $\|(\mathbf{a}-t \mathbf{b})\| \geq 0$. Take the square, decompose and you obtain an inequality, quadratic in t. Using the discriminant method deduce the Cauchy-Schwarz-Bunyakovsky inequality.
5. Consider the following system of linear equations:

$$
\begin{array}{rr}
x+y+z & =2 \\
x+2 y+ & z
\end{array}=3, \text { } 2 x+3 y+2 z=5 .
$$

Interpret the planes and their intersection lines. Describe all the solutions of the system.
6. Consider the following two systems of linear equations (c a real parameter):

$$
\begin{array}{rlrlrl}
x-y+ & z & =1 & x- & y+ & z=1 \\
x- & 2 y- & z & =-2 & 2 x- & 2 y- \\
2 x- & 3 y+ & c z & =1 . & 2 x+ & c y+ \\
& z=-1 \\
& =3 .
\end{array}
$$

How does the number of solutions depend on c in each system?
7. HW Apply elimination with circling the pivots of the system. Name and describe the elimination matrices!

$$
\begin{array}{lrl}
2 x-3 y & =3 \\
4 x-5 y+ & z & =7 \\
2 x-y- & 3 z & =5 .
\end{array}
$$

Solve by back(ward) substitution.
8. Construct a 3×3 system that needs two row exchanges to reach a triangular form.
9. Suppose the first two columns are the same. What happens during elimination?
10. For which numbers a does elimination stop before reaching a full triangle in

$$
\left[\begin{array}{ll}
a & 1 \\
a & a
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{lll}
a & 2 & 3 \\
a & a & 4 \\
a & a & a
\end{array}\right] ?
$$

