1. Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$. Write down the three elimination matrices E_{12}, E_{13}, E_{23} that turn A into upper triangular form. Which of these three matrices commute with each other? Compute the matrix product $E_{23} E_{13} E_{12} A$.
2. True or false?
(i) If every entry of A and B is positive then every entry of $A B$ is also positive. (We assume $A B$ exists.)
(ii) If elimination takes A to U then $A \mathbf{x}=\mathbf{0}$ implies $U \mathbf{x}=\mathbf{0}$.
(iii) If $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution then A has no 0 entries.
(iv) If $A B$ and $B A$ are both defined then both of $A B$ and $B A$ are square.
3. Determine the "swap matrix" $S_{i j}$ such that $S_{i j} A$ is the same as A, but its rows i and j are swapped. What is $A S_{i j}$ (if A is $n \times n$)?
4. Multiply the following matrices A and B. First using row-times-column dot products and then using column-times-row matrices that you add up.

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & -1 \\
1 & -1 \\
0 & -2
\end{array}\right]
$$

5. Let E_{21} denote the elimination matrix that subtracts the double of row 1 from row 2 and let S_{23} denote the swap matrix of rows 2 and 3 . What is $S_{23} E_{21}$, which does the two steps at once?
6. Write the following problem in a system of linear equations $A \mathbf{x}=\mathbf{b}$: Old Smith has a son, who is two years younger then half of his age. He also has a granddaughter, who is 4 years older than the third of her father's age. The sum of all of their ages is 118 . How old are they?
7. Multiply the following matrices C and D as $C D$ and as $D C$. Also compute C^{10} and D^{200}.

$$
C=\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & 0 & 1
\end{array}\right] \quad D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & c & 1
\end{array}\right]
$$

8. Show that for $n \times n$ matrices A, B in general we do not have $(A+B)^{2}=A^{2}+2 A B+B^{2}$. What should we write instead of the middle term?
9. $\mathbf{H W}(3 \times 3$ matrices) What is the matrix B such that for every matrix A
(i) $B A=3 A$;
(ii) every row of $B A$ is equal to the first row of A ?
10. For which numbers a, b, c, d does the following hold?

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{l}
11 \\
11
\end{array}\right]=\left[\begin{array}{l}
11 \\
11
\end{array}\right] \cdot\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

