1. Compute the inverse of $\left[\begin{array}{ll}2 & 2 \\ 3 & 4\end{array}\right]$ using Gauss-Jordan's method.
2. True or false?
(i) If $A^{T}=A^{-1}$ then A is symmetric.
(ii) If $A^{T} A=A A^{T}$ then A is square.
(iii) If $A^{T}=-A$ then A is invertible.
(iv) Every elimination matrix is diagonally dominant, so invertible.
(v) Suppose in the 3×3 matrix A the sum of the first two columns is the third column. Then $A \mathbf{x}=\mathbf{0}$ surely has a nonzero solution.
3. Determine the inverse of the following two matrices $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right], \quad B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1\end{array}\right]$.
4. Suppose A, B, C are $n \times n$ and $A B C=D$ is invertible. Show that A, B, C are all invertible and express B^{-1} using D^{-1} and A, C.
5. What is a, b so that the following holds?

$$
\left[\begin{array}{cccc}
4 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right]^{-1}=\left[\begin{array}{llll}
a & b & b & b \\
b & a & b & b \\
b & b & a & b \\
b & b & b & a
\end{array}\right]
$$

Can you generalise?
6. Compute the $L U$ decomposition of

$$
C=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right] .
$$

Make it into an $L D U$ decomposition.
7. Separate the following system $A \mathbf{x}=\mathbf{b}$ into $L \mathbf{y}=\mathbf{b}$ and $U \mathbf{x}=\mathbf{y}$.

$$
\begin{aligned}
x+y+z & =1 \\
x+2 y+3 z & =3 \\
x+3 y+5 z & =10 .
\end{aligned}
$$

8. HW Let $A=\left[\begin{array}{lll}1 & c & 0 \\ 2 & 4 & 1 \\ 3 & 5 & 1\end{array}\right]$. For which values of c does elimination break down and how? Write $A=L U$ in the other cases.
9. We mentioned that if A, B are lower triangular then their product $A B$ is also lower triangular. Prove it! Also prove that if A is lower triangular with nonzero elements on the diagonal then the inverse A^{-1} is also lower triangular.

Hint for both: Consider the i-th column of $A B$ being governed by the i-th column of B. Where are the 0's?

