1. Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right]$. Is there a subspace of the vector space of 2×2 matrices that contains exactly one of A and B ?
Is there a subspace that contains exactly two of A, B and I ?
Is there a subsapce that contains no nonzero diagonal matrices?
2. True or false for an $m \times n$ matrix A of rank r describing a system $A \mathbf{x}=\mathbf{b}$.?
(i) If $n=m=r$ then A is invertible.
(ii) If $n<m$ then the system has no solution.
(iii) If $n>m$ then there are free columns.
(iv) If the system has a unique solution then $n=r$.
(v) If the system has no solution then $\mathbf{b} \neq \mathbf{0}$ and $r>0$.
3. Let $V=\mathbb{R}^{2}$ but scaling is defined by $\lambda\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{c}\lambda v_{1} \\ 0\end{array}\right]$. Is this a vector space?
4. Let $V=\mathbb{R}^{2}$ but addition is defined by $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]+\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{l}v_{1}+w_{2} \\ v_{2}+w_{1}\end{array}\right]$. Is this a vector space?
5. Describe the smallest subspace of the 2×3 matrices that contain (a) $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$; (b) A and $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 0\end{array}\right] ;$ (c) B and $C=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$.
6. Which of the following give the correct definition of the rank of A (with R being a reduced row echelon form)?
(i) The number of nonzero rows of R.
(ii) The number of columns minus the number of zero rows.
(iii) The number of columns minus the number of free columns.
(iv) The number of 1's in the matrix R.
7. Write the special solutions of $R \mathbf{x}=\mathbf{0}$ and of $R^{T} \mathbf{y}=\mathbf{0}$ for the following matrices. Write down the nullspace matrices.

$$
R_{1}=\left[\begin{array}{llll}
1 & 0 & 2 & 4 \\
0 & 1 & 3 & 5 \\
0 & 0 & 0 & 0
\end{array}\right] \quad R_{2}=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

8. HW Find the reduced row echelon form and the rank of $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 2 & 2 & 4 \\ 1 & c & 2\end{array}\right]$. Which are the pivot columns? Give the special solutions. (The answer will depend on c.)
9. Prove that every rank- r matrix can be written as a sum of r rank- 1 matrices!
