1. Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 3 \\ 1 & 2 & 2 & 5\end{array}\right]$. Determine bases for each of $C(A), C\left(A^{T}\right), N(A), N\left(A^{T}\right)$. Check the orthogonality of the respective subspaces.
2. True or false?
(i) A and A^{T} are orthogonal to each other.
(ii) $N(A)$ and $N\left(A^{T}\right)$ are orthogonal complements.
(iii) If the row space of A equals the column space of A then $N(A)=N\left(A^{T}\right)$.
(iv) The projection on $N\left(A^{T}\right)$ is $I-A\left(A^{T} A\right)^{-1} A^{T}$ if A has independent columns.
(v) If $C(A)$ and $N(A)$ are orthogonal complements then $A=A^{T}$.
3. The following system of equations has no solution:

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
2 & 3 & -1 \\
1 & 3 & -2
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
4 \\
4
\end{array}\right] \quad A \mathbf{x}=\mathbf{b}
$$

Find a combination of the equations that produces $0=1$. Reinterpret this to finding a vector $\mathbf{y} \in N\left(A^{T}\right)$ such that $\mathbf{y}^{T} \mathbf{b}=1$.
Prove that given an $m \times n$ matrix A and vector $\mathbf{b} \in \mathbb{R}^{m}$ then either there exists $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\mathbf{b}$ or there exists $\mathbf{y} \in N\left(A^{T}\right)$ such that $\mathbf{y}^{T} \mathbf{b}=1$.
4. Determine the projection matrix onto the column space and onto the left nullspace of R_{1}. Do the same for R_{2}. Comment on the results.

$$
R_{1}=\left[\begin{array}{cc}
3 & 1 \\
2 & 1 \\
2 & 1 \\
2 & 1
\end{array}\right] ; \quad R_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

5. Let $W \leq V=\mathbb{R}^{10}$ have dimension 7 .
(i) What is the dimension of its orthogonal complement W^{\perp} ?
(ii) What are the possible dimensions of subspaces $U \leq V$ orthogonal to W ?
(iii) Suppose $C(A)=W$. What are the minimal number of columns/rows of A ?
(iv) Suppose $N(A)=W$. What are the minimal number of columns/rows of A ?
6. HW Let $x+y-2 z=0$ describe a plane \mathcal{P} in the space \mathbb{R}^{3}. Determine the 1×3 matix A for which $N(A)=\mathcal{P}$. Find the special solutions s_{1}, s_{2} and a basis for the orthogonal complement \mathcal{P}^{\perp}. Split $x=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$ into nullspace and row space components.
7. Determine the projection matrices onto the column space of R and onto the left nullspace. Answer these questions for R^{T}, too.

$$
R=\left[\begin{array}{rrrr}
2 & 0 & 2 & 4 \\
0 & 2 & 3 & 5 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

