1. Compute the inverse of $\left[\begin{array}{ll}2 & 2 \\ 3 & 4\end{array}\right]$ using Gauss-Jordan's method.

Solution:
$\left[\begin{array}{ll|ll}2 & 2 & 1 & 0 \\ 3 & 4 & 0 & 1\end{array}\right] \mapsto\left[\begin{array}{ll|rr}2 & 2 & 1 & 0 \\ 0 & 1 & -\frac{3}{2} & 1\end{array}\right] \mapsto\left[\begin{array}{rr|rr}2 & 0 & 4 & -2 \\ 0 & 1 & -\frac{3}{2} & 1\end{array}\right] \mapsto\left[\begin{array}{rr|rr}1 & 0 & 2 & -1 \\ 0 & 1 & -\frac{3}{2} & 1\end{array}\right]$,
so the inverse matrix is $\left[\begin{array}{rr}2 & -1 \\ -\frac{3}{2} & 1\end{array}\right]$.
2. True or false?
(i) If $A^{T}=A^{-1}$ then A is symmetric.
(ii) If $A^{T} A=A A^{T}$ then A is square.
(iii) If $A^{T}=-A$ then A is invertible.
(iv) Every elimination matrix is diagonally dominant, so invertible.
(v) Suppose in the 3×3 matrix A the sum of the first two columns is the third column. Then $A \mathbf{x}=\mathbf{0}$ surely has a nonzero solution.
Solution:
(i) False. $A^{T}=A^{-1}$ holds, for example, for $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]^{-1}=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ but the matrix is not symmetric.
(ii) True. If A is $m \times n$ then $A^{T} A$ is $n \times n$, while $A A^{T}$ is $m \times m$, so if they are equal then $m=n$.
(iii) False. $A^{T}=-A$ is even true for the zero matrix.
(iv) False. Though they are invertible but not necessarily diagonally dominant, for example, $\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$ is a not diagonally dominant elimination matrix.
(v) True. $\mathbf{x}=\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$ is a nontrivial solution.
3. Determine the inverse of the following two matrices $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right], \quad B=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 1 & 3 & 3 & 1\end{array}\right]$.

Solution:

$$
\begin{aligned}
& \mapsto\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & \left\lvert\, \begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right. & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]=\left[I \mid A^{-1}\right] \quad \Rightarrow \quad A^{-1}=\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right] \\
& {[B \mid I]=\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 3 & 3 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \mapsto\left[\begin{array}{llll:rrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & -1 & 0 & 1 & 0 \\
0 & 3 & 3 & 1 & -1 & 0 & 0 & 1
\end{array}\right] \mapsto} \\
& {\left[\begin{array}{rrrl|rrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 3 & 1 & 2 & -3 & 0 & 1
\end{array}\right] \mapsto\left[\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 3 & -3 & 1
\end{array}\right]=\left[I \mid B^{-1}\right]} \\
& \Rightarrow \quad B^{-1}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right] \text {. }
\end{aligned}
$$

4. Suppose A, B, C are $n \times n$ and $A B C=D$ is invertible. Show that A, B, C are all invertible and express B^{-1} using D^{-1} and A, C.
Solution: $D^{-1} A B C=D^{-1} D=I$, so C is invertible, and $C^{-1}=D^{-1} A B$. But then $I=C C^{-1}=$ $C D^{-1} A B$, so B is invertible, and $B^{-1}=C D^{-1} A$. Finally, A is invertible, since $I=B B^{-1}=$ $B C D^{-1} A$.
5. What is a, b so that the following holds?

$$
\left[\begin{array}{rrrr}
4 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right]^{-1}=\left[\begin{array}{llll}
a & b & b & b \\
b & a & b & b \\
b & b & a & b \\
b & b & b & a
\end{array}\right]
$$

Can you generalise?
Solution:

$$
I=\left[\begin{array}{rrrr}
4 & -1 & -1 & -1 \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right]\left[\begin{array}{llll}
a & b & b & b \\
b & a & b & b \\
b & b & a & b \\
b & b & b & a
\end{array}\right]
$$

and the elements of the product matrix are $4 a-3 b$ in the diagonal, and $2 b-a$ everywhere else. So $4 a-3 b=1$ and $2 b-a=0$, which gives $a=\frac{2}{5}$ and $b=\frac{1}{5}$. So the inverse of the matrix which has 4 in the diagonal and -1 elsewhere is the matrix which has $\frac{2}{5}$ in the diagonal and $\frac{1}{5}$ elsewhere.

If our original matrix were $n \times n$ with n in the diagonal and -1 everywhere else, then the inverse will also be a matrix which has a 's in the diagonal and b 's elsewhere, and a, b satisfy the equations $n a-(n-1) b=1$ and $-a+2 b=0$, which gives $a=\frac{2}{n+1}$ and $b=\frac{1}{n+1}$.

The reason behind this is that an $n \times n$ matrix A which is uniform in the diagonal and also outside the diagonal can be written as a linear combination of the matrix I and J, where J is the matrix whose every entry is 1 . Then $J^{2}=n J$ and the inverse of A will also be a linear combination of I and J, and it can be found by solving the linear equation $(a I+b J)(x I+y J)=$ $a x I+(b x+a y+n b y) J=I$, that is, $x=a^{-1}$, and $y=-b a^{-1} /(a+n b)$.
6. Compute the $L U$ decomposition of

$$
C=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right]
$$

Make it into an LDU decomposition.

Solution:

$$
\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right] \mapsto\left[\begin{array}{ccc}
3 & 1 & 0 \\
0 & 8 / 3 & 1 \\
0 & 1 & 3
\end{array}\right] \mapsto\left[\begin{array}{ccc}
3 & 1 & 0 \\
0 & 8 / 3 & 1 \\
0 & 0 & 21 / 8
\end{array}\right]=U, \quad L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 1 & 0 \\
0 & 3 / 8 & 1
\end{array}\right]
$$

So the $L U$ decomposition is

$$
A=\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 1 & 0 \\
0 & 3 / 8 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & 0 \\
0 & 8 / 3 & 1 \\
0 & 0 & 21 / 8
\end{array}\right]
$$

and from this the $L D U$ decomposition

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 3 & 1 & 0 \\
0 & 3 / 8 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 8 / 3 & 0 \\
0 & 0 & 21 / 8
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 / 3 & 0 \\
0 & 1 & 3 / 8 \\
0 & 0 & 1
\end{array}\right]
$$

7. Separate the following system $A \mathbf{x}=\mathbf{b}$ into $L \mathbf{y}=\mathbf{b}$ and $U \mathbf{x}=\mathbf{y}$.

$$
\begin{aligned}
& x+y+z=1 \\
& x+2 y+3 z=3 \\
& x+3 y+5 z=10
\end{aligned}
$$

Solution:

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 5
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 2 & 4
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]=U, \quad L=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right]
$$

So the two systems of equations are

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 2 & 1
\end{array}\right] \mathbf{y}=\left[\begin{array}{c}
1 \\
3 \\
10
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \mathbf{x}=\mathbf{y}
$$

The first has a solution $\mathbf{y}=(1,2,5)$ but the second is contradictory. (The original system has no solution, either.)
8. HW Let $A=\left[\begin{array}{lll}1 & c & 0 \\ 2 & 4 & 1 \\ 3 & 5 & 1\end{array}\right]$. For which values of c does elimination break down and how? Write $A=L U$ in the other cases.
9. We mentioned that if A, B are lower triangular then their product $A B$ is also lower triangular. Prove it. Also prove that if A is lower triangular with nonzero elements on the diagonal then the inverse A^{-1} is also lower triangular.

Hint for both: Consider the i-th column of $A B$ being governed by the i-th column of B. Where are the 0's?
Solution: The i-th column of $A B$ is the linear combination of the columns of A with coefficients taken from the i-th column of B. But the latter can have nonzero elements only in the entries on and below the diagonal, so the result is a linear combination of columns of A starting at the i-th column. However, these columns have only 0's before the i 'th entry, so this will be true for their linear combination, as well.

For the inverse, we are looking for a matrix B such that $A B=I$. We get the i-th column of I as a linear combination of columns of A. Suppose that the k-th is the first column which actually appears in this linear combination. Then the k-th entry of the product will be nonzero, since the remaining columns are all 0 at this entry. But this means that $k \geq i$, so we get the i-th column of $A B$ as the linear combination of the columns of A starting with the i-th, that is, the first $i-1$ entries of the i-th column of B are 0 . This proves that $B=A^{-1}$ must be a lower triangular matrix.

Another proof for the statement about the inverse is that such a matrix can be changed to a diagonal matrix by using only downward elimination (that is, left multiplication by lower triangular matrices) and then to I by scalar multiplication of the rows (this means left multiplication by diagonal matrices). So $I=X_{1} \cdots X_{m} A$ for some lower triangular matrices, thus $A^{-1}=X_{1} \cdots X_{m}$ is also lower triangular by the first part of the problem.

