Solutions to problem sheet 7

1. Let $A = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 3 \\ 1 & 2 & 2 & 5 \end{bmatrix}$. Determine bases for each of C(A), $C(A^T)$, N(A), $N(A^T)$. Check the orthogonality of the respective subspaces.

Solution:

	[1	1	1	2		[1	1	1	2		[1	0	0	-1]
A =	0	1	1	3	\mapsto	0	1	1	3	\mapsto	0	1	1	3
	[1	2	2	5		0	1	1	3		0	0	0	0

From the reduced row echelon form of A we can see that $\{(1,0,1), (1,1,2)\}$ (the pivot columns of A) is a basis for C(A), $\{(1,0,0,-1), (0,1,1,3)\}$ (the nonzero rows of rref(A) is a basis for $C(A^T)$, and $\{(0,-1,1,0), (1,-3,0,1)\}$ (the special solutions of $A\mathbf{x} = \mathbf{0}$) is a basis for N(A). For $N(A^T)$ we use $rref(A^T)$.

$A^T =$	-1 1 1	0 1 1 3	$\begin{bmatrix} 1\\2\\2\\5 \end{bmatrix}$	\mapsto	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	0 1 1 3	$\begin{bmatrix} 1\\1\\1\\3 \end{bmatrix}$	\mapsto	$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$	0 1 0	$\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}$
	L2	3	$5 \rfloor$		L0	3	31		L0	0	$\lfloor 0 \rfloor$

Then $\{-1, -1, 1\}$ (the special solution of $A^T \mathbf{x} = \mathbf{0}$) is a basis for $N(A^T)$. To see that two subspaces are orthogonal, it is enough to check that their spanning elements are orthogonal.

 $\begin{array}{l} C(A) \perp N(A^T) \colon (1,0,1)(-1,-1,1) = -1 + 1 = 0, \ (1,1,2)(-1,-1,1) = -1 - 1 + 2 = 0. \\ C(A^T) \perp N(A) \colon (1,0,0,-1)(0,-1,1,0) = 0 + 0 + 0 + 0 = 0, \ (1,0,0,-1)(1,-3,0,1) = 1 + 0 + 0 - 1 = 0, \\ (0,1,1,3)(0,-1,1,0) = 0 - 1 + 1 + 0 = 0, \ (0,1,1,3)((1,-3,0,1) = 0 - 3 + 0 + 3 = 0. \end{array}$

- **2.** True or false?
 - (i) A and A^T are orthogonal to each other.
 - (ii) N(A) and $N(A^T)$ are orthogonal complements.
 - (iii) If the row space of A equals the column space of A then $N(A) = N(A^T)$.
 - (iv) The projection matrix on $N(A^T)$ is $I A(A^T A)^{-1}A^T$ if A has independent columns.
 - (v) If C(A) and N(A) are orthogonal complements then $A = A^T$.
 - Solution: (i) False. We defined orthogonality for subspaces not for matrices. But even if we consider $A \in \mathbb{R}^{m \times n}$ and $A^T \in \mathbb{R}^{n \times m}$ as vectors of \mathbb{R}^{mn} , we almost never get orthogonal vectors, for instance, for an all positive A, these vectors cannot be orthogonal.
 - (ii) False. For an $m \times n$ matrix $N(A) \leq \mathbb{R}^n$ and $N(A^T) \leq \mathbb{R}^m$, so these subspaces are usually not even in the same vector space.
 - (iii) True. If $C(A^T) = C(A)$ then $N(A) = C(A^T)^{\perp} = C(A)^{\perp} = N(A^T)$.
 - (iv) True. $A(A^T A)^{-1}A^T$ is the projection matrix on C(A), so $I A(A^T A)^{-1}A^T$ is the projection matrix on its orthogonal complement, $N(A^T)$.
 - (v) False. For example, if A is an invertible $n \times n$ matrix, which is not symmetric, say, $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, then $C(A) = \mathbb{R}^n$ and $N(A) = \{\mathbf{0}\}$ orthogonal complements but $A \neq A^T$.
- **3.** The following system of equations has no solution:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 3 & -1 \\ 1 & 3 & -2 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix} \qquad A\mathbf{x} = \mathbf{b}.$$

Find a combination of the equations that produces 0 = 1. Reinterpret this to finding a vector $\mathbf{y} \in N(A^T)$ such that $\mathbf{y}^T \mathbf{b} = 1$.

Prove that given an $m \times n$ matrix A and a vector $\mathbf{b} \in \mathbb{R}^m$, either there exists $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{b}$, or there exists $\mathbf{y} \in N(A^T)$ such that $\mathbf{y}^T \mathbf{b} = 1$.

Solution: The Gaussian elimination

$$\begin{bmatrix} 1 & 0 & 1 & | & 1 \\ 2 & 3 & -1 & | & 4 \\ 1 & 3 & -2 & | & 4 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 1 & | & 1 \\ 0 & 3 & -3 & | & 2 \\ 0 & 3 & -3 & | & 3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 1 & | & 1 \\ 0 & 3 & -3 & | & 2 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}$$

shows that $(\mathbf{r}_3 - \mathbf{r}_1) - (\mathbf{r}_2 - 2\mathbf{r}_1) = \mathbf{r}_1 - \mathbf{r}_2 + \mathbf{r}_3 = (0, 0, 0, 1)$, so for $\mathbf{y} = (1, -1, 1)$, we have $\mathbf{y}^T A = \mathbf{0}^T$ (or equivalently, $A^T \mathbf{y} = \mathbf{0}$), and $\mathbf{y}^T \mathbf{b} = 1$.

In general, if $A\mathbf{x} = \mathbf{b}$ has no solution, then taking the reduced row echelon form of the whole augmented matrix $[A|\mathbf{b}]$, we get $[EA | E\mathbf{b}]$ (*E* being the product of the row operation matrices), where the last nonzero row is $[\mathbf{0}^T|1]$. If this last nonzero row is the *i*th row then let \mathbf{e}_i be the *i*'th standard basis element $(0, \ldots, 0, 1, 0, \ldots, 0)$ of \mathbf{R}^m . Then $\mathbf{e}_i^T E[A|\mathbf{b}] = [\mathbf{0}^T|1]$, so for the row vector $\mathbf{y}^T = \mathbf{e}_i^T E$, we have $\mathbf{y}^T A = \mathbf{0}^T$ (implying $\mathbf{y} \in N(A^T)$), and $\mathbf{y}^T \mathbf{b} = 1$. Conversely, if there is such a \mathbf{y} , then there cannot exist an \mathbf{x} with $A\mathbf{x} = \mathbf{b}$, because then $\mathbf{y}^T A\mathbf{x} =$

Conversely, if there is such a **y**, then there cannot exist an **x** with $A\mathbf{x} = \mathbf{b}$, because then $\mathbf{y}^T A\mathbf{x} = \mathbf{0}^T \mathbf{x} = 0$ but $\mathbf{y}^T b = 1$.

So one and only one of the two condition always holds.

4. Determine the projection matrix onto the column space and onto the left nullspace of R_1 . Do the same for R_2 . Comment on the results.

$$R_1 = \begin{bmatrix} 3 & 1 \\ 2 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}; \qquad \qquad R_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$

Solution: The columns of both R_1 and R_2 are independent, so we can use the formula $A(A^T A)^{-1}A^T$ for the projection matrix on the column space of A.

$$R_{1}^{T}R_{1} = \begin{bmatrix} 21 & 9\\ 9 & 4 \end{bmatrix}, \text{ and } (R_{1}^{T}R_{1})^{-1} = \begin{bmatrix} 4/3 & -3\\ -3 & 7 \end{bmatrix}. \text{ Then the projection matrix on } C(R_{1}) \text{ is}$$

$$P_{1} = R_{1}(R_{1}^{T}R_{1})^{-1}R_{1}^{T} = \begin{bmatrix} 3 & 1\\ 2 & 1\\ 2 & 1\\ 2 & 1 \end{bmatrix} \begin{bmatrix} 4/3 & -3\\ -3 & 7 \end{bmatrix} \begin{bmatrix} 3 & 2 & 2 & 2\\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1/3 & 1/3 & 1/3\\ 0 & 1/3 & 1/3 & 1/3\\ 0 & 1/3 & 1/3 & 1/3\\ 0 & 1/3 & 1/3 & 1/3 \end{bmatrix}$$

From this, the projection matrix on $N(R_1^T)$ (that is, on the orthogonal complement of $C(R_1)$) is

$$I - P_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2/3 & -1/3 & -1/3 \\ 0 & -1/3 & 2/3 & -1/3 \\ 0 & -1/3 & -1/3 & 2/3 \end{bmatrix}.$$

The same for R_2 gives $R_2^T R_2 = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$, $(R_2^T R_2)^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1/3 \end{bmatrix}$, and the projection matrix on $C(R_2)$

$$P_{2} = R_{2}(R_{2}^{T}R_{2})^{-1}R_{2}^{T} = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0\\ 0 & 1/3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1/3 \\ 0 & 1/3 \\ 0 & 1/3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1/3 & 1/3 & 1/3\\ 0 & 1/3 & 1/3 & 1/3\\ 0 & 1/3 & 1/3 & 1/3 \end{bmatrix},$$

and the projection matrix on $N(R_2^T) = C(R_2)^{\perp}$ is

$$I - P_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 2/3 & -1/3 & -1/3 \\ 0 & -1/3 & 2/3 & -1/3 \\ 0 & -1/3 & -1/3 & 2/3 \end{bmatrix}.$$

We can see that we got the same projection matrices on $C(R_1)$ and $C(R_2)$ (and then also on $N(R_1^T)$ and $N(R_2)^T$), so the two matrices must have the same column spaces (the column space of the projection matrix is actually the subspace it projects on). Indeed, (1, 0, 0, 0) = (3, 2, 2, 2) - 2(1, 1, 1, 1) and (0, 1, 1, 1) = 3(1, 1, 1, 1) - (3, 2, 2, 2), so $C(R_2) \leq C(R_1)$, and conversely, (3, 2, 2, 2) = 3(1, 0, 0, 0) + 2(0, 1, 1, 1) and (1, 1, 1, 1) = (1, 0, 0, 0) + (0, 1, 1, 1), so $C(R_1) \leq C(R_2)$.

- 5. Let $W \leq V = \mathbb{R}^{10}$ have dimension 7.
 - (i) What is the dimension of its orthogonal complement W^{\perp} ?
 - (ii) What are the possible dimensions of the subspaces $U \leq V$ orthogonal to W?
 - (iii) Suppose C(A) = W. What is the minimal number of columns/rows of A?
 - (iv) Suppose N(A) = W. What is the minimal number of columns/rows of A?

Solution: (i) $\dim W^{\perp} = \dim V - \dim W = 10 - 7 = 3.$

- (ii) A subspace U ≤ V is orthogonal to W if and only if U is a subspace of W[⊥], so dim U ≤ 3 (and, clearly, there exist subspaces of W[⊥] of dimension 0, 1, 2 or 3).
 (iii) Since W ≤ ℝ¹⁰, the columns of A are in ℝ¹⁰. These columns span a 7-dimensional subspace,
- (iii) Since $W \leq \mathbb{R}^{10}$, the columns of A are in \mathbb{R}^{10} . These columns span a 7-dimensional subspace, so there must be at least 7 columns. Since the columns are in \mathbb{R}^{10} , there must be exactly 10 rows.
- (iv) $N(A) = W \leq \mathbb{R}^{10}$, so the rows of A are also in \mathbb{R}^{10} , which implies that there are exactly 10 columns. On the other hand, $\dim(C(A^T)) = r(A) = 10 7 = 3$, so there must be at least 3 rows.
- 6. HW Let x + y 2z = 0 describe a plane \mathcal{P} in the space \mathbb{R}^3 . Determine the 1×3 matrix A for which $N(A) = \mathcal{P}$. Find the special solutions \mathbf{s}_1 , \mathbf{s}_2 and a basis for the orthogonal complement \mathcal{P}^{\perp} . Split $\mathbf{x} = \begin{bmatrix} 2\\0\\0 \end{bmatrix}$ into nullspace and row space components.
- 7. Determine the projection matrices onto the column space of R and onto the left nullspace. Answer these questions for R^T , too.

$$R = \begin{bmatrix} 2 & 0 & 2 & 4 \\ 0 & 2 & 3 & 5 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Solution: We can see immediately from the matrix R that its rank is 3 (one more step to a row echelon form), and a basis of C(R) is $\{(2,0,0,0), (0,2,0,0), (4,5,-1,1)\}$ but we can replace this basis with a simpler one by changing it to another spanning set of three elements: $\{(1,0,0,0), (0,1,0,0), (0,0,-1,1)\}$, doing elementary column operations on the matrix. Then we can use the following matrix A for calculating the projection matrix.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}, \qquad A^{T}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix},$$
$$P = A(A^{T}A)^{-1}A^{T} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/2 \\ 0 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/2 & -1/2 \\ 0 & 0 & -1/2 & 1/2 \end{bmatrix}$$

Solutions to problem sheet 7/4

The projection matrix on the left nullspace is

$$I - P = \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 1/2 & 1/2\\ 0 & 0 & 1/2 & 1/2 \end{bmatrix}$$

We can find a basis for the row space by doing elementary row operations on R:

$$R = \begin{bmatrix} 2 & 0 & 2 & 4 \\ 0 & 2 & 3 & 5 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & 2 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 3/2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

so $\{(1,0,1,0), (0,1,3/2,1), (0,0,0,1)\}$ is a basis of $C(\mathbb{R}^T)$. We use the matrix B with these basis elements as column to calculate the projection matrix P'.

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 3/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad B^T B = \begin{bmatrix} 2 & 3/2 & 0 \\ 3/2 & 13/4 & 0 \\ 0 & 0 & 1 \end{bmatrix}, (B^T B)^{-1} = \frac{1}{17} \begin{bmatrix} 13 & -6 & 0 \\ -6 & 8 & 0 \\ 0 & 0 & 17 \end{bmatrix},$$
$$P' = B(B^T B)^{-1} B^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 3/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \frac{1}{17} \begin{bmatrix} 13 & -6 & 0 \\ -6 & 8 & 0 \\ 0 & 0 & 17 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 3/2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \frac{1}{17} \begin{bmatrix} 13 & -6 & 0 \\ -6 & 8 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 3/2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \frac{1}{17} \begin{bmatrix} 13 & -6 & 4 & 0 \\ -6 & 8 & 6 & 0 \\ 4 & 6 & 13 & 0 \\ 0 & 0 & 0 & 17 \end{bmatrix},$$

and the projection matrix on N(R) is

$$I - P' = \frac{1}{17} \begin{bmatrix} 4 & 6 & -4 & 0 \\ 6 & 9 & -6 & 0 \\ -4 & -6 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(One can check the projection matrices by letting them act on the columns (in case of P', the rows) of R, and on a spanning set of $N(R^T)$ and N(R), respectively.)