1. Let $A=\left[\begin{array}{llll}1 & 1 & 1 & 2 \\ 0 & 1 & 1 & 3 \\ 1 & 2 & 2 & 5\end{array}\right]$. Determine bases for each of $C(A), C\left(A^{T}\right), N(A), N\left(A^{T}\right)$. Check the orthogonality of the respective subspaces.
Solution:

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 2 \\
0 & 1 & 1 & 3 \\
1 & 2 & 2 & 5
\end{array}\right] \mapsto\left[\begin{array}{llll}
1 & 1 & 1 & 2 \\
0 & 1 & 1 & 3 \\
0 & 1 & 1 & 3
\end{array}\right] \mapsto\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

From the reduced row echelon form of $A$ we can see that $\{(1,0,1),(1,1,2)\}$ (the pivot columns of $A$ ) is a basis for $C(A)$, $\{(1,0,0,-1),(0,1,1,3)\}$ (the nonzero rows of $\operatorname{rref}(A)$ is a basis for $C\left(A^{T}\right)$, and $\{(0,-1,1,0),(1,-3,0,1)\}$ (the special solutions of $A \mathbf{x}=\mathbf{0})$ is a basis for $N(A)$. For $N\left(A^{T}\right)$ we use $\operatorname{rref}\left(A^{T}\right)$.

$$
A^{T}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 2 \\
1 & 1 & 2 \\
2 & 3 & 5
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 3 & 3
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Then $\{-1,-1,1)\}$ (the special solution of $A^{T} \mathbf{x}=\mathbf{0}$ ) is a basis for $N\left(A^{T}\right)$.
To see that two subspaces are orthogonal, it is enough to check that their spanning elements are orthogonal.
$C(A) \perp N\left(A^{T}\right):(1,0,1)(-1,-1,1)=-1+1=0,(1,1,2)(-1,-1,1)=-1-1+2=0$.
$C\left(A^{T}\right) \perp N(A):(1,0,0,-1)(0,-1,1,0)=0+0+0+0=0,(1,0,0,-1)(1,-3,0,1)=1+0+0-1=0$, $(0,1,1,3)(0,-1,1,0)=0-1+1+0=0,(0,1,1,3)((1,-3,0,1)=0-3+0+3=0$.
2. True or false?
(i) $A$ and $A^{T}$ are orthogonal to each other.
(ii) $N(A)$ and $N\left(A^{T}\right)$ are orthogonal complements.
(iii) If the row space of $A$ equals the column space of $A$ then $N(A)=N\left(A^{T}\right)$.
(iv) The projection matrix on $N\left(A^{T}\right)$ is $I-A\left(A^{T} A\right)^{-1} A^{T}$ if $A$ has independent columns.
(v) If $C(A)$ and $N(A)$ are orthogonal complements then $A=A^{T}$.

Solution: (i) False. We defined orthogonality for subspaces not for matrices. But even if we consider $A \in \mathbb{R}^{m \times n}$ and $A^{T} \in \mathbb{R}^{n \times m}$ as vectors of $\mathbb{R}^{m n}$, we almost never get orthogonal vectors, for instance, for an all positive $A$, these vectors cannot be orthogonal.
(ii) False. For an $m \times n$ matrix $N(A) \leq \mathbb{R}^{n}$ and $N\left(A^{T}\right) \leq \mathbb{R}^{m}$, so these subspaces are usually not even in the same vector space.
(iii) True. If $C\left(A^{T}\right)=C(A)$ then $N(A)=C\left(A^{T}\right)^{\perp}=C(A)^{\perp}=N\left(A^{T}\right)$.
(iv) True. $A\left(A^{T} A\right)^{-1} A^{T}$ is the projection matrix on $C(A)$, so $I-A\left(A^{T} A\right)^{-1} A^{T}$ is the projection matrix on its orthogonal complement, $N\left(A^{T}\right)$.
(v) False. For example, if $A$ is an invertible $n \times n$ matrix, which is not symmetric, say, $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$, then $C(A)=\mathbb{R}^{n}$ and $N(A)=\{\mathbf{0}\}$ orthogonal complements but $A \neq A^{T}$.
3. The following system of equations has no solution:

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
2 & 3 & -1 \\
1 & 3 & -2
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
4 \\
4
\end{array}\right] \quad A \mathbf{x}=\mathbf{b}
$$

Find a combination of the equations that produces $0=1$. Reinterpret this to finding a vector $\mathbf{y} \in N\left(A^{T}\right)$ such that $\mathbf{y}^{T} \mathbf{b}=1$.
Prove that given an $m \times n$ matrix $A$ and a vector $\mathbf{b} \in \mathbb{R}^{m}$, either there exists $\mathbf{x} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\mathbf{b}$, or there exists $\mathbf{y} \in N\left(A^{T}\right)$ such that $\mathbf{y}^{T} \mathbf{b}=1$.

Solution: The Gaussian elimination

$$
\left[\begin{array}{rrr|r}
1 & 0 & 1 & 1 \\
2 & 3 & -1 & 4 \\
1 & 3 & -2 & 4
\end{array}\right] \mapsto\left[\begin{array}{rrr|r}
1 & 0 & 1 & 1 \\
0 & 3 & -3 & 2 \\
0 & 3 & -3 & 3
\end{array}\right] \mapsto\left[\begin{array}{rrr|r}
1 & 0 & 1 & 1 \\
0 & 3 & -3 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

shows that $\left(\mathbf{r}_{3}-\mathbf{r}_{1}\right)-\left(\mathbf{r}_{2}-2 \mathbf{r}_{1}\right)=\mathbf{r}_{1}-\mathbf{r}_{2}+\mathbf{r}_{3}=(0,0,0,1)$, so for $\mathbf{y}=(1,-1,1)$, we have $\mathbf{y}^{T} A=\mathbf{0}^{T}$ (or equivalently, $A^{T} \mathbf{y}=\mathbf{0}$ ), and $\mathbf{y}^{T} \mathbf{b}=1$.
In general, if $A \mathbf{x}=\mathbf{b}$ has no solution, then taking the reduced row echelon form of the whole augmented matrix $[A \mid \mathbf{b}]$, we get $[E A \mid E \mathbf{b}]$ ( $E$ being the product of the row operation matrices), where the last nonzero row is $\left[\mathbf{0}^{T} \mid 1\right]$. If this last nonzero row is the $i$ th row then let $\mathbf{e}_{i}$ be the $i$ 'th standard basis element $(0, \ldots, 0,1,0, \ldots, 0)$ of $\mathbf{R}^{m}$. Then $\mathbf{e}_{i}^{T} E[A \mid \mathbf{b}]=\left[\mathbf{0}^{T} \mid 1\right]$, so for the row vector $\mathbf{y}^{T}=\mathbf{e}_{i}^{T} E$, we have $\mathbf{y}^{T} A=\mathbf{0}^{T}$ (implying $\mathbf{y} \in N\left(A^{T}\right)$ ), and $\mathbf{y}^{T} \mathbf{b}=1$.
Conversely, if there is such a $\mathbf{y}$, then there cannot exist an $\mathbf{x}$ with $A \mathbf{x}=\mathbf{b}$, because then $\mathbf{y}^{T} A \mathbf{x}=$ $\mathbf{0}^{T} \mathbf{x}=0$ but $\mathbf{y}^{T} b=1$.
So one and only one of the two condition always holds.
4. Determine the projection matrix onto the column space and onto the left nullspace of $R_{1}$. Do the same for $R_{2}$. Comment on the results.

$$
R_{1}=\left[\begin{array}{cc}
3 & 1 \\
2 & 1 \\
2 & 1 \\
2 & 1
\end{array}\right] ; \quad R_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

Solution: The columns of both $R_{1}$ and $R_{2}$ are independent, so we can use the formula $A\left(A^{T} A\right)^{-1} A^{T}$ for the projection matrix on the column space of $A$.
$R_{1}^{T} R_{1}=\left[\begin{array}{rr}21 & 9 \\ 9 & 4\end{array}\right]$, and $\left(R_{1}^{T} R_{1}\right)^{-1}=\left[\begin{array}{rr}4 / 3 & -3 \\ -3 & 7\end{array}\right]$. Then the projection matrix on $C\left(R_{1}\right)$ is

$$
\begin{aligned}
P_{1}=R_{1}\left(R_{1}^{T} R_{1}\right)^{-1} R_{1}^{T}= & {\left[\begin{array}{ll}
3 & 1 \\
2 & 1 \\
2 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{rr}
4 / 3 & -3 \\
-3 & 7
\end{array}\right]\left[\begin{array}{llll}
3 & 2 & 2 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]=} \\
& {\left[\begin{array}{ccc}
1 & -2 \\
-1 / 3 & 1 \\
-1 / 3 & 1 \\
-1 / 3 & 1
\end{array}\right]\left[\begin{array}{llll}
3 & 2 & 2 & 2 \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right] }
\end{aligned}
$$

From this, the projection matrix on $N\left(R_{1}^{T}\right)$ (that is, on the orthogonal complement of $C\left(R_{1}\right)$ ) is

$$
I-P_{1}=\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 2 / 3 & -1 / 3 & -1 / 3 \\
0 & -1 / 3 & 2 / 3 & -1 / 3 \\
0 & -1 / 3 & -1 / 3 & 2 / 3
\end{array}\right]
$$

The same for $R_{2}$ gives $R_{2}^{T} R_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right],\left(R_{2}^{T} R_{2}\right)^{-1}=\left[\begin{array}{cc}1 & 0 \\ 0 & 1 / 3\end{array}\right]$, and the projection matrix on $C\left(R_{2}\right)$

$$
\begin{aligned}
P_{2}=R_{2}\left(R_{2}^{T} R_{2}\right)^{-1} R_{2}^{T}= & {\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 3
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]=} \\
& {\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 3 \\
0 & 1 / 3 \\
0 & 1 / 3
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 / 3 & 1 / 3 & 1 / 3
\end{array}\right], }
\end{aligned}
$$

and the projection matrix on $N\left(R_{2}^{T}\right)=C\left(R_{2}\right)^{\perp}$ is

$$
I-P_{2}=\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 2 / 3 & -1 / 3 & -1 / 3 \\
0 & -1 / 3 & 2 / 3 & -1 / 3 \\
0 & -1 / 3 & -1 / 3 & 2 / 3
\end{array}\right]
$$

We can see that we got the same projection matrices on $C\left(R_{1}\right)$ and $C\left(R_{2}\right)$ (and then also on $N\left(R_{1}^{T}\right)$ and $N\left(R_{2}\right)^{T}$ ), so the two matrices must have the same column spaces (the column space of the projection matrix is actually the subspace it projects on). Indeed, $(1,0,0,0)=(3,2,2,2)-$ $2(1,1,1,1)$ and $(0,1,1,1)=3(1,1,1,1)-(3,2,2,2)$, so $C\left(R_{2}\right) \leq C\left(R_{1}\right)$, and conversely, $(3,2,2,2)=$ $3(1,0,0,0)+2(0,1,1,1)$ and $(1,1,1,1)=(1,0,0,0)+(0,1,1,1)$, so $C\left(R_{1}\right) \leq C\left(R_{2}\right)$.
5. Let $W \leq V=\mathbb{R}^{10}$ have dimension 7 .
(i) What is the dimension of its orthogonal complement $W^{\perp}$ ?
(ii) What are the possible dimensions of the subspaces $U \leq V$ orthogonal to $W$ ?
(iii) Suppose $C(A)=W$. What is the minimal number of columns/rows of $A$ ?
(iv) Suppose $N(A)=W$. What is the minimal number of columns/rows of $A$ ?

Solution: (i) $\operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W=10-7=3$.
(ii) A subspace $U \leq V$ is orthogonal to $W$ if and only if $U$ is a subspace of $W^{\perp}$, so $\operatorname{dim} U \leq 3$ (and, clearly, there exist subspaces of $W^{\perp}$ of dimension $0,1,2$ or 3 ).
(iii) Since $W \leq \mathbb{R}^{10}$, the columns of $A$ are in $\mathbb{R}^{10}$. These columns span a 7 -dimensional subspace, so there must be at least 7 columns. Since the columns are in $\mathbb{R}^{10}$, there must be exactly 10 rows.
(iv) $N(A)=W \leq \mathbb{R}^{10}$, so the rows of $A$ are also in $\mathbb{R}^{10}$, which implies that there are exactly 10 columns. On the other hand, $\operatorname{dim}\left(C\left(A^{T}\right)\right)=r(A)=10-7=3$, so there must be at least 3 rows.
6. HW Let $x+y-2 z=0$ describe a plane $\mathcal{P}$ in the space $\mathbb{R}^{3}$. Determine the $1 \times 3$ matrix A for which $N(A)=\mathcal{P}$. Find the special solutions $\mathbf{s}_{1}, \mathbf{s}_{2}$ and a basis for the orthogonal complement $\mathcal{P}^{\perp}$. Split $\mathbf{x}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$ into nullspace and row space components.
7. Determine the projection matrices onto the column space of $R$ and onto the left nullspace. Answer these questions for $R^{T}$, too.

$$
R=\left[\begin{array}{rrrr}
2 & 0 & 2 & 4 \\
0 & 2 & 3 & 5 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Solution: We can see immediately from the matrix $R$ that its rank is 3 (one more step to a row echelon form), and a basis of $C(R)$ is $\{(2,0,0,0),(0,2,0,0),(4,5,-1,1)\}$ but we can replace this basis with a simpler one by changing it to another spanning set of three elements: $\{(1,0,0,0),(0,1,0,0),(0,0,-1,1)\}$, doing elementary column operations on the matrix. Then we can use the following matrix $A$ for calculating the projection matrix.

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right], \quad A^{T} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right], \\
P=A\left(A^{T} A\right)^{-1} A^{T}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]= \\
\\
{\left[\begin{array}{rrrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 / 2 \\
0 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / 2 & -1 / 2 \\
0 & 0 & -1 / 2 & 1 / 2
\end{array}\right]}
\end{gathered}
$$

The projection matrix on the left nullspace is

$$
I-P=\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 0 & 1 / 2 & 1 / 2
\end{array}\right]
$$

We can find a basis for the row space by doing elementary row operations on $R$ :

$$
R=\left[\begin{array}{rrrr}
2 & 0 & 2 & 4 \\
0 & 2 & 3 & 5 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1
\end{array}\right] \mapsto\left[\begin{array}{llll}
2 & 0 & 2 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \mapsto\left[\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
0 & 1 & 3 / 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

so $\{(1,0,1,0),(0,1,3 / 2,1),(0,0,0,1)\}$ is a basis of $C\left(R^{T}\right)$. We use the matrix $B$ with these basis elements as column to calculate the projection matrix $P^{\prime}$.

$$
\begin{aligned}
& B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 3 / 2 & 0 \\
0 & 0 & 1
\end{array}\right], \quad B^{T} B=\left[\begin{array}{ccc}
2 & 3 / 2 & 0 \\
3 / 2 & 13 / 4 & 0 \\
0 & 0 & 1
\end{array}\right],\left(B^{T} B\right)^{-1}=\frac{1}{17}\left[\begin{array}{rrr}
13 & -6 & 0 \\
-6 & 8 & 0 \\
0 & 0 & 17
\end{array}\right], \\
& P^{\prime}=B\left(B^{T} B\right)^{-1} B^{T}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 3 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] \frac{1}{17}\left[\begin{array}{rrr}
13 & -6 & 0 \\
-6 & 8 & 0 \\
0 & 0 & 17
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 3 / 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]= \\
& \frac{1}{17}\left[\begin{array}{rrr}
13 & -6 & 0 \\
-6 & 8 & 0 \\
4 & 6 & 0 \\
0 & 0 & 17
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 3 / 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\frac{1}{17}\left[\begin{array}{rrrr}
13 & -6 & 4 & 0 \\
-6 & 8 & 6 & 0 \\
4 & 6 & 13 & 0 \\
0 & 0 & 0 & 17
\end{array}\right],
\end{aligned}
$$

and the projection matrix on $N(R)$ is

$$
I-P^{\prime}=\frac{1}{17}\left[\begin{array}{rrrr}
4 & 6 & -4 & 0 \\
6 & 9 & -6 & 0 \\
-4 & -6 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(One can check the projection matrices by letting them act on the columns (in case of $P^{\prime}$, the rows) of $R$, and on a spanning set of $N\left(R^{T}\right)$ and $N(R)$, respectively.)

