
Vector and matrix algebra Solutions to problem sheet 10 2023 fall

1. Find the nonzero terms in the big formula of detA (out of the 24). What are the signs?

A =


1 0 0 2
0 3 4 0
5 6 0 7
8 0 0 9


Solution: We have to pick a nonzero element from each row and column. From column 3 we can
only choose 4 and then from column 2 only 6 because we cannot pick two elements from the same
row. Now we have two choices for column 1 and 4: either we take 1 and 9 or 8 and 2. So detA
is the sum of two terms: |A| = |P1| · 1 · 4 · 6 · 9 + |P2| · 2 · 4 · 6 · 8. The permutation matrix P1

which belongs to the permutation 1324 has determinant (−1)1 = 1, since this permutation can be
brought to 1234 by one swap only (this means one row exchange in P1 to bring it to I), and P2

belongs to the permutation 4321, and here we need two swaps, so |P2| = (−1)2 = 1. This gives
|A| = −1 · 4 · 6 · 9 + 2 · 4 · 6 · 8 = 24(−9 + 16) = 24 · 7 = 168.

2. True or false?
(i) If the main diagonal entries of a matrix are all 0 then the determinant is 0.
(ii) If |A| = 0 = |B| then |A+B| = 0.
(iii) If |A| = 0 = |B| then |AB| = 0.
(iv) If |A| = 0 then there is an entry of A which is 0.
(v) If |A| > 0 then there is an entry of A which is positive.

Solution: (i) False. For example
∣∣∣∣ 0 1
1 0

∣∣∣∣ = 0 · 0− 1 · 1 = −1 6= 0.

(ii) False. For A =

[
1 0
0 0

]
and B =

[
0 0
0 1

]
, we have |A| = |B| = 0 but |A+B| =

∣∣∣∣ 1 0
0 1

∣∣∣∣ = 1.

(iii) True. If A and B are n × n matrices then |A| = |B| = 0 implies that r(A), r(B) < n, so
r(AB) ≤ min{r(A), r(B)} < n, thus |AB| = 0.

(iv) False. For example
∣∣∣∣ 1 1
1 1

∣∣∣∣ = 0.

(v) False. For example
∣∣∣∣−1 0

0 −1

∣∣∣∣ = 1.

3. Write recursive formulas for an = |An|, bn = |Bn| and cn = |Cn| and determine their values.

An=



2 −1 0 . . . 0

−1 2 −1
. . . 0

0
. . . . . . . . . 0

0
. . . −1 2 −1

0 . . . 0 −1 2

; Bn=



1 −1 0 . . . 0

−1 2 −1
. . . 0

0
. . . . . . . . . 0

0
. . . −1 2 −1

0 . . . 0 −1 2

; Cn=



1 −1 0 . . . 0

1 1 −1
. . . 0

0
. . . . . . . . . 0

0
. . . 1 1 −1

0 . . . 0 1 1

.

Solution: If we use the cofactor formula for the first row, and in calculating the second cofactor,
we expand the determinant along the first column then we get an = 2an−1 − (−1)(−1)an−2 =

2an−1 − an−2. Starting with A1 = det[2] = 2, and a2 = det

[
2 −1
−1 2

]
= 3, and calculating a few

more values by the recursive formula, we get a3 = 4, a4 = 5, a5 = 6, which gives the conjecture
that an = n + 1. Indeed, if this is true up to n, then also true for n + 1: an+1 = 2an − an−1 =
2(n+ 1)− n = n+ 2 = (n+ 1) + 1. So it is correct for every n.
(Or: we can rewrite the recursion as an−an−1 = an−1−an−2, and using this recursively, an−an−1 =
an−1 − an−2 = an−2 − an−3 = . . . = a2 − a1 = 3 − 2 = 1, so an = an−1 + 1 = an−2 + 2 = . . . =
a1 + (n− 1) = 2 + (n− 1) = n+ 1.)
If we start reducing the determinant to smaller determinants in case of Bn the same way as in
the case of An, then we get bn = an−1 − an−2 = n − (n − 1) = 1 for n ≥ 3, while b1 = 1 and
b2 = 2− (−1)2 = 1 also holds.
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But we can also find a recursion for bn using only bk’s if we start expanding along the last row, and
then in the second term along the last column: bn = 2bn−1− bn, the same recursion as before, only
here the initial values are different. Now we would get bn − bn−1 = bn−1 − bn−2 = . . . = b2 − b1 =
1− 1 = 0, so bn = bn−1 = . . . = b1 = 1.
Finally, starting to expand the determinant of Cn the same way as for An, we get the recursion
cn = cn−1+cn−2, which is the well-known recursion defining the Fibonacci sequence, and the initial
members of the sequence here are c1 = 1 and c2 = 2, so we get, indeed, the Fibonacci numbers (in
fact, the usual indexing there is different, f0 = 0, f1 = f2 = 1, f3 = 2, . . ., so cn = fn+1.

4. Find all the cofactors of A3 of the previous exercise. Form the cofactor matrix, the adjugate matrix
and A−1

3 .
Solution:

A3 =

 2 −1 0
−1 2 −1
0 −1 2

 , C =



∣∣∣∣ 2 −1
−1 2

∣∣∣∣ − ∣∣∣∣−1 −1
0 2

∣∣∣∣ ∣∣∣∣−1 2
0 −1

∣∣∣∣
−
∣∣∣∣−1 0
−1 2

∣∣∣∣ ∣∣∣∣ 2 0
0 2

∣∣∣∣ −
∣∣∣∣ 2 −1
0 −1

∣∣∣∣∣∣∣∣−1 0
2 −1

∣∣∣∣ − ∣∣∣∣ 2 0
−1 −1

∣∣∣∣ ∣∣∣∣ 2 −1
−1 2

∣∣∣∣

 =

 3 2 1
2 4 2
1 2 3



Then |A3| = 8 + 0 + 0− 0− 2− 2 = 4, so

adjA3 = CT =

 3 2 1
2 4 2
1 2 3

 and A−1
3 =

1

|A3|
adjA3 =

1

4

 3 2 1
2 4 2
1 2 3


5. Use Cramer’s Rule to solve x + 2y = 1

2x + y = 3
.

Solution:

x =

∣∣∣∣ 1 2
3 1

∣∣∣∣∣∣∣∣ 1 2
2 1

∣∣∣∣ =
5

3
, y =

∣∣∣∣ 1 1
2 3

∣∣∣∣∣∣∣∣ 1 2
2 1

∣∣∣∣ = −
1

3

6. a) Determine the volume of the tetrahedron (inscribed into the unit cube) with vertices: (0, 0, 0),
(1, 1, 0), (1, 0, 1), (0, 1, 1).

b) HW Let P = (2, 1), Q = (7, 2), R = (−1, 8) and S = (0, 9). Determine the area of the triangle
PQR and of the quadrangle PQSR.

Solution: The signed volume is 1
6 times the determinant of the matrix whose rows are the edge

vectors from one vertex of the tetrahedron. Here it is most convenient to take the edges starting
at (0, 0, 0). ∣∣∣∣∣∣

1 1 0
1 0 1
0 1 1

∣∣∣∣∣∣ = 0 + 0 + 0− 0− 1− 1 = −2,

so the volume is | 16 · (−2)| =
1
3 .

7. Argue that the area of a triangle that has integer lattice point coordinates is an integer multiple of
1/2, and the volume of a tetrahedron that has integer lattice point coordinates is an integer multiple
of 1/6.
Solution: The area of the triangle is 1

2 times the absolute value of the determinant of the 2 × 2
matrix, whose rows are the edge vectors of the triangle starting at one vertex. Since this is a
determinant of a matrix with integer entries, it follows from the big formula that the determinant
is an integer. In the case of the tetrahedron, we get similarly that the volume is 1

6 times the
absolute value of the determinant of a 3 × 3 matrix with integer entries (the rows are the edge
vectors starting from one vertex), so here we get an integer multiple of 1

6 .
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8. Suppose A has orthonormal columns. Using ATA justify that det(A) = ±1.
Solution: Only square matrices have determinants, so it is assumed in the problem that A is an
n × n matrix. Since its columns are orthonormal (that is, A is an orthogonal matrix), ATA = I,
so by the product rule 1 = |I| = |A| · |AT | = |A|2, and this implies that |A| = ±1.

9. Rearragning the three vectors, which of the triple products ( × ) · are the same as (a× b) · c?
Solution: We obtain the triple product (a × b) · c as the determinant of the 3 × 3 matrix whose
rows are a, b and c in this order. If we switch two vectors then the determinant changes its sign.
So we get the same triple product if and only if we use an even number of swaps on the vectors.
Thus the triple product is the same for (b× c) · a and (c× a) · b (these need two swaps), and has
opposite sign in the other three cases. That is,

(a× b) · c = (b× c) · a = (c× a) · b = −(c× b) · a = −(b× a) · c = −(a× c) · b.

10. A point u in space is the position of the mass on which a force F acts (also a 3-dimensional vector).
Observe that if u and F are parallel then there is no turning. However if they are not parallel then
there is. The rotational force, the torque is exactly u× F. Check that the direction if correct.

Solution: If u and F are parallel then u×F = 0, so the torque is 0. Otherwise u×F is perpendicular
to the plane of u and F, and the direction indicates which way the mass is turning with respect to
an axis through the origin: if we look at the plane from the end point of u × F then the turn is
counterclockwise.

11. Given a matrix your friend picks a row. You win if you can change at most one element of that
row to make the determinant 0. Can you always win?

Solution: If every cofactor corresponding to the entries of the given row is zero then the determinant
is already zero, so I win. If there is a nonzero cofactor whose value is c 6= 0, and the determinant of
the whole matrix is d, then adding −d/c to the corresponding element, the determinant becomes
0, since (−d/c) · c is added to it when we expand the determinant along the given row. So I win in
that case, as well.

12. Let A =

[
1 −2
−3 6

]
. Determine the eigenvalues and corresponding eigenvectors of A and of A+ I.

Solution:
∣∣∣∣ 1− λ −2
−3 6− λ

∣∣∣∣ = λ2 − 7λ = λ(λ− 7) = 0 if λ = 0 or λ = 7. The eigenvectors for λ = 0

are the solutions of Ax = 0.[
1 −2
−3 6

]
7→

[
1 −2
0 0

]
⇒ x = x2

[
2
1

]
.

The eigenvectors for λ = 7 are the solutions of (A− 7I)x = 0.[
−6 −2
−3 −1

]
7→

[
1 1/3
0 0

]
⇒ x = x2

[
−1/3

1

]
.

A+ I =

[
2 −2
−3 7

]
, |(A+ I)− λI| =

∣∣∣∣ 2− λ −2
−3 7− λ

∣∣∣∣ = λ2 − 9λ+ 8 = 0 ⇒ λ1 = 1, λ2 = 8

The eigenvectors for λ1 = 1 are in the nullspace of
[

1 −2
−3 6

]
, and for λ2 = 8 in the nullspace of[

−6 −2
−3 −1

]
, the same as in the case of A, so the eigenvectors are also the same: x2

[
2
1

]
for λ1 and

x2

[
−1/3

1

]
for λ2.
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13. Determine the eigenvalues and corresponding eigenvectors of B =

[
1 3
2 0

]
, of B2 and of B−1.

Solution:
|B − λI| =

[
1− λ 3
2 −λ

]
= λ2 − λ− 6 = 0 ⇒ λ1 = 3, λ2 = −2

Eigenvectors:

for λ1 = 3 :

[
−2 3
2 −3

]
7→

[
1 −3/2
0 0

]
⇒ x = x2

[
3/2

1

]
,

for λ2 = −2 :

[
3 3
2 2

]
7→

[
1 1
0 0

]
⇒ x = x2

[
−1
1

]
.

B2 =

[
7 3
2 6

]
, |B2 − λI| =

∣∣∣∣ 7− λ 3
2 6− λ

∣∣∣∣ = λ2 − 13λ+ 36 = 0 ⇒ λ1 = 9, λ2 = 4

Eigenvectors:

for λ1 = 9 :

[
−2 3
2 −3

]
x = 0 ⇔ x = x2

[
3/2

1

]
,

for λ2 = 4 :

[
3 3
2 2

]
x = 0 ⇔ x = x2

[
−1
1

]
.

B−1 =

[
0 1/2

1/3 −1/6

]
, |B−1 − I| =

∣∣∣∣−λ 1
2

1
3 − 1

6 − λ

∣∣∣∣ = λ2 +
1

6
λ− 1

6
= 0 ⇒ λ1 =

1

3
, λ2 = −1

2

The eigenvectors:

for λ1 =
1

3
:

[
−1/3 1/2
1/3 −1/2

]
7→

[
1 −3/2
0 0

]
⇒ x = x2

[
3/2

1

]

for λ2 = −1

2
:

[
1/2 1/2
1/3 1/3

]
7→

[
1 1
0 0

]
⇒ x = x2

[
−1
1

]
14. Explain the general phenomena governing the previous two exercises.

Solution: If v is an eigenvector of A with eigenvalue λ, and B = f(A) = cmA
m + cm−1A

m−1 +
. . .+c1A+c0I is a polynomial of A, then v is also and eigenvector of B with eigenvalue µ = f(λ) =
cmλ

m + cm−1λ
m−1 + . . . + c1λ + c0. Indeed, A2v = A(Av) = A(λv) = λAv = λλv = λ2v, and

for higher powers Akv = Ak−1λv = Ak−2λ2v = . . . = Aλk−1v = λkv, so f(A)v = (
∑
k

ckA
k)v =∑

k

(ckA
kv) =

∑
k

ckλ
kv = f(λ)v.

Furthermore, if A is invertible, and v is an eigenvector of A with eigenvalue λ, then λ cannot be zero
(because N(A) = {0 } by the invertibility of A), and Av = λv implies that v = Iv = A−1Av =
A−1λv, so A−1v = 1

λv, which means that v is also and eigenvector of A−1 with eigenvalue 1
λ .


