
Vector and matrix algebra Solutions to problem sheet 11 2023 fall

1. Determine the polar form of 1− 3i. What is (1/(1− 3i))2 + (1/(1 + 3i))2?
Solution: z = r(cosϕ + i sinϕ), where r = |1 − 3i| =

√
10 and ϕ = tan−1(−3) = − tan−1 3, since

−π2 < ϕ < π
2 and tanϕ = Imz

Rez = −3.
1/(1−3i) = (1+3i)/(1−3i)(1+3i) = (1+3i)/10 and 1/(1+3i) = (1−3i)/(1+3i)(1−3i) = (1−3i)/10,
so (1/(1− 3i))2 + (1/(1 + 3i))2 = 1

100 ((1 + 3i)2 + (1− 3i)2) = 1
100 (1− 9 + 6i+ 1− 9− 6i) = − 4

25 .

2. Let z, w ∈ C such that |z| = 5, |w| = 3. What is |zw|, |z/w|, |z + w|, |z − w|? If some cannot be
determined exactly then give lower and upper bounds for them.
Solution: |zw| = 5 · 3 = 15, |z/w| = 5/3, ||z| − |w|| ≤ |z + w| ≤ |z| + |w|, so in this case
2 ≤ |z + w| ≤ 8, and applying the same for −w instead of w we get 2 ≤ |z − w| ≤ 8.

3. True or false?
(i) Every complex number has a square root.
(ii) Every comples number has a 100-th root.
(iii) If a complex number is not real then its square root is not real.
(iv) If a complex number is purely imaginary then its square root is purely imaginary.
(v) The square roots of a negative real number are purely imaginary.
Solution: (i) and (ii) are both true.

In general, if z = r(cosϕ + i sinϕ) then n
√
z = n

√
r
(
cos(ϕn + k 2π

n ) + i sin(ϕn + k 2π
n )
)

are the

nth roots of z, or if ϕ is given in degrees then n
√
z = n

√
r
(

cos(ϕn + k 360◦

n ) + i sin(ϕn + k 360◦

n )
)
,

where k = 0, 1, . . . , (n− 1).
(iii) True. The original number is the square of any of its square roots and the square of a real

number is real.
(iv) False. (1 + i)2 = 2i is purely imaginary but 1 + i is not.
(v) True. If a is a positive real number then

√
−a = ±i

√
a.

4. Find the eigenvalues and eigenvectors of the following rank 1 matrices.

A =

 0
1
2

 [ 3 −2 0 ] =

 0 0 0
3 −2 0
6 −4 0

 ; B =

 1
π
−π

 [
√

2 −1 −1 ] ; C =
xyT

xTy

Solution: An n × n rank 1 matrix has a 1-dimensional column space, say, span(a), and then
Av ∈ span(a) can only be λv if either v itself is in span(a), or λ = 0. In the latter case v is in the
(n− 1)-dimensional nullspace of the matrix.
For A, C(A) = span((0, 1, 2)), thus the (nonzero) scalar multiples of (0, 1, 2) are eigenvectors, and
since

A

 0
1
2

 =

 0
−2
−4

 = −2

 0
1
2

 ,
the nonzero scalar multiples of (0, 1, 2) are eigenvectors with eigenvalue −2, while the eigenvectors
with eigenvalue 0 are the nonzero vectors of the subspace spanned by the special solutions of
Ax = 0.  0 0 0

3 −2 0
6 −4 0

 7→
 1 −2/3 0

0 0 0
0 0 0

 , s1 =

 2/3
1
0

 , s2 =

 0
0
1

 .
In general we can say that if for a,b ∈ Rn nonzero vectors, M = abT , then the eigenvectors of
M are the nonzero scalar multiples of a with eigenvalue bTa = a · b, since abTa = (bTa)a, and
the nonzero vectors of (span(b))⊥, since the latter is (n − 1)-dimensional, and for any v in this
subspace abTv = a0 = 0.
By the general rule above, the eigenvalues of B are

√
2 and 0, the eigenvectors for

√
2 are the

nonzero scalar multiples of

 1
π
−π

, and the eigenvectors for 0 are the nozero vectors of

span((
√

2,−1,−1))⊥ = span((1,
√

2, 0), (1, 0,
√

2)).
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C = 1
xTy

xyT , so the eigenvalues are
(

1
xTy

x
)
·y = 1 and 0, and the eigenvectors are in span(x) for

1, and in (span(y))⊥ for 0.

5. Simon says: “every triangular matrix has its eigenvalues on the diagonal.” Is he right?
Solution: Yes. If A is triangular with diagonal elements d1, . . . , dn, then A − λI is also diagonal
with diagonal elements d1 − λ, d2 − λ, . . . , dn − λ, so the eigenvalues are the roots of |A− λI| =
(d1 − λ) · · · (dn − λ).

6. HW Find four independent eigenvectors of D and thus diagonalise it.

D =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


7. Find the eigenvalues of the following permutation matrix.

P =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


Solution:

|P −λI| =

∣∣∣∣∣∣∣
−λ 0 0 1
1 −λ 0 0
0 1 −λ 0
0 0 1 −λ

∣∣∣∣∣∣∣ = −λ ·

∣∣∣∣∣∣
−λ 0 0
1 −λ 0
0 1 −λ

∣∣∣∣∣∣−1 ·

∣∣∣∣∣∣
1 −λ 0
0 1 −λ
0 0 1

∣∣∣∣∣∣ = (−λ)4−14 = λ4−1,

so the eigenvalues are the fourth roots of 1: ±1 and ±i.
8. Suppose AX = XΛ with X invertible. Which is true?

(i) If X is triangular then A is triangular.
(i) If A is triangular then X is triangular.
(i) The columns of (X−1)T are eigenvectors of AT .
Solution: (i) True. Suppose X is lower triangular (for upper triangular the same arguments

work). If we multiply the equation by X−1 from the left, we see that A = XΛX−1, where X
and Λ are both lower triangular (Λ is even diagonal), and then X−1 and A = XΛX−1 are also
lower triangular (see problem 4/9).

(ii) False A = I is triangular, and IX = XI for every matrix X, not only for triangular matrices.
(iii) True. AX = XΛ ⇒ (by multiplying the equation by X−1 from right and left) X−1A = ΛX−1

⇒ (by transposing) AT (X−1)T = (X−1)TΛT = (X−1)TΛ, so Λ is also the diagonal form of
AT , and the columns of the also invertible matrix (X−1)T are corresponding eigenvectors.

9. Let g0 = 0 and g1 = 1. For n > 1 define gn = gn−1+gn−2

2 . (This sequence of consecutive means is
sometimes called “Gibonacci” series.) Using matrices determine a formula for gn, and show that
gn → 2/3.
Solution: [

gn
gn−1

]
=

[
1
2gn−1 + 1

2gn−2
gn−1

]
=

[
1/2 1/2
1 0

] [
gn−1
gn−2

]
,

so for
A =

[
1/2 1/2
1 0

]
,

[
gn
gn−1

]
= An−1

[
g1
g0

]
= An−1

[
1
0

]
.

First we diagonalize the matrix A for calculating its powers.

|A− λI| = λ2 − 1

2
λ− 1

2
⇒ λ1 = 1, λ2 = −1

2
.
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Eigenvectors for

λ1 = 1 : x2

[
1
1

]
, λ2 = −1

2
: x2

[
− 1

2
1

]
,

so we can use the eigenvectors
[

1
1

]
and

[
−1

2

]
for diagonalization.

X =

[
1 −1
1 2

]
, X−1 =

1

3

[
2 1
−1 1

]
, X−1AX = Λ =

[
1 0
0 − 1

2

]
.

An = (XΛX−1)n = XΛnX−1 =

[
1 −1
1 2

] [
1 0
0 (−1/2)n

]
1

3

[
2 1
−1 1

]
=

1

3

[
2 + (−1/2)n 1− (−1/2)n

2 + (−1/2)n−1 1− (−1/2)n−1

]
, ⇒

[
gn
gn−1

]
= An−1

[
1
0

]
=

1

3

[
2 + (−1/2)n−1

2 + (−1/2)n−2

]
So gn = 1

3 (2 + (−1/2)n−1)→ 2
3 .

10. Diagonalise A to X−1AX = Λ and determine the limits Λn → Λ∞ and An → A∞.

A =

 0 0.2 0.4
0.3 0.4 0.5
0.7 0.4 0.1


Solution:

|A−λI| =

∣∣∣∣∣∣
−λ 0.2 0.4
0.3 0.4− λ 0.5
0.7 0.4 0.1− λ

∣∣∣∣∣∣ = −λ(λ2−0.5λ−0.16)−0.2(−0.3λ−0.32)+0.4(0.7λ−0.16) =

= −λ3 + 0.5λ2 + 0.5λ = −λ(λ2 − 0.5λ− 0.5) ⇒ λ1 = 1, λ2 = 0, λ3 = −0.5.

Find an eigenvector for each of the three eigenvalues (they will be independent).

λ1 = 1: A−I =

−1 0.2 0.4
0.3 −0.6 0.5
0.7 0.4 −0.9

 7→
 1 −0.2 −0.4

0 −0.54 0.62
0 0.54 −0.62

 7→
 1 0 − 17

27
0 1 − 31

27
0 0 0

 , v1 =

 17
31
27


λ2 = 0: A =

 0 0.2 0.4
0.3 0.4 0.5
0.7 0.4 0.1

 7→
 1 4

3
5
3

0 1 2
1 4

7
1
7

 7→7→
 1 0 −1

0 1 2
0 0 0

 , v2 =

 1
−2

1


λ3 = −0.5: A− 0.5I =

 0.5 0.2 0.4
0.3 0.9 0.5
0.7 0.4 0.6

 7→
 1 0.4 0.8

0 0.78 0.26
0 0.12 0.04

 7→
 1 0 2/3

0 1 1/3
0 0 0

 , v3 =

−2
−1

3



X =

 17 1 −2
31 −2 −1
27 1 3

 , X−1 =
1

75

 1 1 1
24 −21 9
−17 −2 13

 , X−1AX = Λ =

 1 0 0
0 0 0
0 0 −0.5



A∞ = XΛ∞X−1 =

 17 1 −2
31 −2 −1
27 1 3

 1 0 0
0 0 0
0 0 0

 1

75

 1 1 1
24 −21 9
−17 −2 13

 =
1

75

 17 17 17
31 31 31
27 27 27

 .
(Actually, less would have been enough for calculating A∞. If the rows of X−1 are wT

1 , . . . ,w
T
n (left

eigenvectors for λ1, . . . , λn), and the columns of X are v1, . . . ,vn (right eigenvectors for λ1, . . . , λn),
then Am = XΛmX−1 = [λm1 v1 . . . λ

m
n vn]X−1 = λm1 v1w

T
1 + . . .+λmn vnw

T
n , and since here λmi → 0

for i = 2, 3, Λ∞ = diag(1, 0, 0), we have A∞ = v1w
T , that is, we did not need the eigenvectors for

the small eigenvalues.)


