1. Determine the polar form of $1-3 i$. What is $(1 /(1-3 i))^{2}+(1 /(1+3 i))^{2}$?

Solution: $z=r(\cos \varphi+i \sin \varphi)$, where $r=|1-3 i|=\sqrt{10}$ and $\varphi=\tan ^{-1}(-3)=-\tan ^{-1} 3$, since $-\frac{\pi}{2}<\varphi<\frac{\pi}{2}$ and $\tan \varphi=\frac{\operatorname{Im} z}{\mathrm{Re} z}=-3$.
$1 /(1-3 i)=(1+3 i) /(1-3 i)(1+3 i)=(1+3 i) / 10$ and $1 /(1+3 i)=(1-3 i) /(1+3 i)(1-3 i)=(1-3 i) / 10$, so $(1 /(1-3 i))^{2}+(1 /(1+3 i))^{2}=\frac{1}{100}\left((1+3 i)^{2}+(1-3 i)^{2}\right)=\frac{1}{100}(1-9+6 i+1-9-6 i)=-\frac{4}{25}$.
2. Let $z, w \in \mathbb{C}$ such that $|z|=5,|w|=3$. What is $|z w|,|z / w|,|z+w|,|z-w|$? If some cannot be determined exactly then give lower and upper bounds for them.
Solution: $\quad|z w|=5 \cdot 3=15,|z / w|=5 / 3,||z|-|w|| \leq|z+w| \leq|z|+|w|$, so in this case $2 \leq|z+w| \leq 8$, and applying the same for $-w$ instead of w we get $2 \leq|z-w| \leq 8$.
3. True or false?
(i) Every complex number has a square root.
(ii) Every comples number has a $100-$ th root.
(iii) If a complex number is not real then its square root is not real.
(iv) If a complex number is purely imaginary then its square root is purely imaginary.
(v) The square roots of a negative real number are purely imaginary.

Solution: (i) and (ii) are both true.
In general, if $z=r(\cos \varphi+i \sin \varphi)$ then $\sqrt[n]{z}=\sqrt[n]{r}\left(\cos \left(\frac{\varphi}{n}+k \frac{2 \pi}{n}\right)+i \sin \left(\frac{\varphi}{n}+k \frac{2 \pi}{n}\right)\right)$ are the nth roots of z, or if φ is given in degrees then $\sqrt[n]{z}=\sqrt[n]{r}\left(\cos \left(\frac{\varphi}{n}+k \frac{360^{\circ}}{n}\right)+i \sin \left(\frac{\varphi}{n}+k \frac{360^{\circ}}{n}\right)\right)$, where $k=0,1, \ldots,(n-1)$.
(iii) True. The original number is the square of any of its square roots and the square of a real number is real.
(iv) False. $(1+i)^{2}=2 i$ is purely imaginary but $1+i$ is not.
(v) True. If a is a positive real number then $\sqrt{-a}= \pm i \sqrt{a}$.
4. Find the eigenvalues and eigenvectors of the following rank 1 matrices.

$$
A=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]\left[\begin{array}{lll}
3 & -2 & 0
\end{array}\right]=\left[\begin{array}{rrr}
0 & 0 & 0 \\
3 & -2 & 0 \\
6 & -4 & 0
\end{array}\right] ; \quad B=\left[\begin{array}{r}
1 \\
\pi \\
-\pi
\end{array}\right]\left[\begin{array}{lll}
\sqrt{2} & -1 & -1
\end{array}\right] ; \quad C=\frac{\mathbf{x y}^{T}}{\mathbf{x}^{T} \mathbf{y}}
$$

Solution: An $n \times n$ rank 1 matrix has a 1 -dimensional column space, say, $\operatorname{span}(\mathbf{a})$, and then $A \mathbf{v} \in \operatorname{span}(\mathbf{a})$ can only be $\lambda \mathbf{v}$ if either \mathbf{v} itself is in $\operatorname{span}(\mathbf{a})$, or $\lambda=0$. In the latter case \mathbf{v} is in the ($n-1$)-dimensional nullspace of the matrix.
For $A, \mathcal{C}(A)=\operatorname{span}((0,1,2))$, thus the (nonzero) scalar multiples of $(0,1,2)$ are eigenvectors, and since

$$
A\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{r}
0 \\
-2 \\
-4
\end{array}\right]=-2\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],
$$

the nonzero scalar multiples of $(0,1,2)$ are eigenvectors with eigenvalue -2 , while the eigenvectors with eigenvalue 0 are the nonzero vectors of the subspace spanned by the special solutions of $A \mathrm{x}=\mathbf{0}$.

$$
\left[\begin{array}{rrr}
0 & 0 & 0 \\
3 & -2 & 0 \\
6 & -4 & 0
\end{array}\right] \mapsto\left[\begin{array}{ccc}
1 & -2 / 3 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{s}_{1}=\left[\begin{array}{c}
2 / 3 \\
1 \\
0
\end{array}\right], \quad \mathbf{s}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

In general we can say that if for $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$ nonzero vectors, $M=\mathbf{a b}^{T}$, then the eigenvectors of M are the nonzero scalar multiples of \mathbf{a} with eigenvalue $\mathbf{b}^{T} \mathbf{a}=\mathbf{a} \cdot \mathbf{b}$, since $\mathbf{a b}^{T} \mathbf{a}=\left(\mathbf{b}^{T} \mathbf{a}\right) \mathbf{a}$, and the nonzero vectors of $(\operatorname{span}(\mathbf{b}))^{\perp}$, since the latter is $(n-1)$-dimensional, and for any \mathbf{v} in this subspace $\mathbf{a b}^{T} \mathbf{v}=\mathbf{a} 0=\mathbf{0}$.
By the general rule above, the eigenvalues of B are $\sqrt{2}$ and 0 , the eigenvectors for $\sqrt{2}$ are the nonzero scalar multiples of $\left[\begin{array}{r}1 \\ \pi \\ -\pi\end{array}\right]$, and the eigenvectors for 0 are the nozero vectors of

$$
\operatorname{span}((\sqrt{2},-1,-1))^{\perp}=\operatorname{span}((1, \sqrt{2}, 0),(1,0, \sqrt{2}))
$$

$C=\frac{1}{\mathbf{x}^{T} \mathbf{y}} \mathbf{x} \mathbf{y}^{T}$, so the eigenvalues are $\left(\frac{1}{\mathbf{x}^{T} \mathbf{y}} \mathbf{x}\right) \cdot \mathbf{y}=1$ and 0 , and the eigenvectors are in $\operatorname{span}(\mathbf{x})$ for 1 , and in $(\operatorname{span}(\mathbf{y}))^{\perp}$ for 0 .
5. Simon says: "every triangular matrix has its eigenvalues on the diagonal." Is he right?

Solution: Yes. If A is triangular with diagonal elements d_{1}, \ldots, d_{n}, then $A-\lambda I$ is also diagonal with diagonal elements $d_{1}-\lambda, d_{2}-\lambda, \ldots, d_{n}-\lambda$, so the eigenvalues are the roots of $|A-\lambda I|=$ $\left(d_{1}-\lambda\right) \cdots\left(d_{n}-\lambda\right)$.
6. HW Find four independent eigenvectors of D and thus diagonalise it.

$$
D=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

7. Find the eigenvalues of the following permutation matrix.

$$
P=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Solution:
$|P-\lambda I|=\left|\begin{array}{cccc}-\lambda & 0 & 0 & 1 \\ 1 & -\lambda & 0 & 0 \\ 0 & 1 & -\lambda & 0 \\ 0 & 0 & 1 & -\lambda\end{array}\right|=-\lambda \cdot\left|\begin{array}{ccc}-\lambda & 0 & 0 \\ 1 & -\lambda & 0 \\ 0 & 1 & -\lambda\end{array}\right|-1 \cdot\left|\begin{array}{ccc}1 & -\lambda & 0 \\ 0 & 1 & -\lambda \\ 0 & 0 & 1\end{array}\right|=(-\lambda)^{4}-1^{4}=\lambda^{4}-1$,
so the eigenvalues are the fourth roots of 1: ± 1 and $\pm i$.
8. Suppose $A X=X \Lambda$ with X invertible. Which is true?
(i) If X is triangular then A is triangular.
(i) If A is triangular then X is triangular.
(i) The columns of $\left(X^{-1}\right)^{T}$ are eigenvectors of A^{T}.

Solution: (i) True. Suppose X is lower triangular (for upper triangular the same arguments work). If we multiply the equation by X^{-1} from the left, we see that $A=X \Lambda X^{-1}$, where X and Λ are both lower triangular (Λ is even diagonal), and then X^{-1} and $A=X \Lambda X^{-1}$ are also lower triangular (see problem $4 / 9$).
(ii) False $A=I$ is triangular, and $I X=X I$ for every matrix X, not only for triangular matrices.
(iii) True. $A X=X \Lambda \Rightarrow$ (by multiplying the equation by X^{-1} from right and left) $X^{-1} A=\Lambda X^{-1}$ \Rightarrow (by transposing) $A^{T}\left(X^{-1}\right)^{T}=\left(X^{-1}\right)^{T} \Lambda^{T}=\left(X^{-1}\right)^{T} \Lambda$, so Λ is also the diagonal form of A^{T}, and the columns of the also invertible matrix $\left(X^{-1}\right)^{T}$ are corresponding eigenvectors.
9. Let $g_{0}=0$ and $g_{1}=1$. For $n>1$ define $g_{n}=\frac{g_{n-1}+g_{n-2}}{2}$. (This sequence of consecutive means is sometimes called "Gibonacci" series.) Using matrices determine a formula for g_{n}, and show that $g_{n} \rightarrow 2 / 3$.
Solution:

$$
\left[\begin{array}{c}
g_{n} \\
g_{n-1}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} g_{n-1}+\frac{1}{2} g_{n-2} \\
g_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
g_{n-1} \\
g_{n-2}
\end{array}\right],
$$

so for

$$
A=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{c}
g_{n} \\
g_{n-1}
\end{array}\right]=A^{n-1}\left[\begin{array}{l}
g_{1} \\
g_{0}
\end{array}\right]=A^{n-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

First we diagonalize the matrix A for calculating its powers.

$$
|A-\lambda I|=\lambda^{2}-\frac{1}{2} \lambda-\frac{1}{2} \quad \Rightarrow \lambda_{1}=1, \lambda_{2}=-\frac{1}{2}
$$

Eigenvectors for

$$
\lambda_{1}=1: \quad x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \lambda_{2}=-\frac{1}{2}: \quad x_{2}\left[\begin{array}{r}
-\frac{1}{2} \\
1
\end{array}\right],
$$

so we can use the eigenvectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}-1 \\ 2\end{array}\right]$ for diagonalization.

$$
\begin{gathered}
X=\left[\begin{array}{rr}
1 & -1 \\
1 & 2
\end{array}\right], \quad X^{-1}=\frac{1}{3}\left[\begin{array}{rr}
2 & 1 \\
-1 & 1
\end{array}\right], \quad X^{-1} A X=\Lambda=\left[\begin{array}{rr}
1 & 0 \\
0 & -\frac{1}{2}
\end{array}\right] \\
A^{n}=\left(X \Lambda X^{-1}\right)^{n}=X \Lambda^{n} X^{-1}=\left[\begin{array}{rr}
1 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & (-1 / 2)^{n}
\end{array}\right] \frac{1}{3}\left[\begin{array}{rr}
2 & 1 \\
-1 & 1
\end{array}\right]= \\
\frac{1}{3}\left[\begin{array}{cc}
2+(-1 / 2)^{n} & 1-(-1 / 2)^{n} \\
2+(-1 / 2)^{n-1} & 1-(-1 / 2)^{n-1}
\end{array}\right], \Rightarrow\left[\begin{array}{c}
g_{n} \\
g_{n-1}
\end{array}\right]=A^{n-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
2+(-1 / 2)^{n-1} \\
2+(-1 / 2)^{n-2}
\end{array}\right]
\end{gathered}
$$

So $g_{n}=\frac{1}{3}\left(2+(-1 / 2)^{n-1}\right) \rightarrow \frac{2}{3}$.
10. Diagonalise A to $X^{-1} A X=\Lambda$ and determine the limits $\Lambda^{n} \rightarrow \Lambda^{\infty}$ and $A^{n} \rightarrow A^{\infty}$.

$$
A=\left[\begin{array}{ccc}
0 & 0.2 & 0.4 \\
0.3 & 0.4 & 0.5 \\
0.7 & 0.4 & 0.1
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
|A-\lambda I|= & \left|\begin{array}{ccc}
-\lambda & 0.2 & 0.4 \\
0.3 & 0.4-\lambda & 0.5 \\
0.7 & 0.4 & 0.1-\lambda
\end{array}\right|=-\lambda\left(\lambda^{2}-0.5 \lambda-0.16\right)-0.2(-0.3 \lambda-0.32)+0.4(0.7 \lambda-0.16)= \\
& =-\lambda^{3}+0.5 \lambda^{2}+0.5 \lambda=-\lambda\left(\lambda^{2}-0.5 \lambda-0.5\right) \quad \Rightarrow \lambda_{1}=1, \lambda_{2}=0, \lambda_{3}=-0.5 .
\end{aligned}
$$

Find an eigenvector for each of the three eigenvalues (they will be independent).

$$
\begin{aligned}
& \lambda_{1}=1: A-I=\left[\begin{array}{rrr}
-1 & 0.2 & 0.4 \\
0.3 & -0.6 & 0.5 \\
0.7 & 0.4 & -0.9
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & -0.2 & -0.4 \\
0 & -0.54 & 0.62 \\
0 & 0.54 & -0.62
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & 0 & -\frac{17}{27} \\
0 & 1 & -\frac{31}{27} \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{l}
17 \\
31 \\
27
\end{array}\right] \\
& \lambda_{2}=0: A=\left[\begin{array}{ccc}
0 & 0.2 & 0.4 \\
0.3 & 0.4 & 0.5 \\
0.7 & 0.4 & 0.1
\end{array}\right] \mapsto\left[\begin{array}{ccc}
1 & \frac{4}{3} & \frac{5}{3} \\
0 & 1 & 2 \\
1 & \frac{4}{7} & \frac{1}{7}
\end{array}\right] \mapsto \mapsto\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right] \\
& \lambda_{3}=-0.5: \quad A-0.5 I=\left[\begin{array}{lll}
0.5 & 0.2 & 0.4 \\
0.3 & 0.9 & 0.5 \\
0.7 & 0.4 & 0.6
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & 0.4 & 0.8 \\
0 & 0.78 & 0.26 \\
0 & 0.12 & 0.04
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 0 & 2 / 3 \\
0 & 1 & 1 / 3 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{r}
-2 \\
-1 \\
3
\end{array}\right] \\
& X=\left[\begin{array}{rrr}
17 & 1 & -2 \\
31 & -2 & -1 \\
27 & 1 & 3
\end{array}\right], \quad X^{-1}=\frac{1}{75}\left[\begin{array}{rrr}
1 & 1 & 1 \\
24 & -21 & 9 \\
-17 & -2 & 13
\end{array}\right], \quad X^{-1} A X=\Lambda=\left[\begin{array}{rrc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -0.5
\end{array}\right] \\
& A^{\infty}=X \Lambda^{\infty} X^{-1}=\left[\begin{array}{rrr}
17 & 1 & -2 \\
31 & -2 & -1 \\
27 & 1 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \frac{1}{75}\left[\begin{array}{rrr}
1 & 1 & 1 \\
24 & -21 & 9 \\
-17 & -2 & 13
\end{array}\right]=\frac{1}{75}\left[\begin{array}{lll}
17 & 17 & 17 \\
31 & 31 & 31 \\
27 & 27 & 27
\end{array}\right] .
\end{aligned}
$$

(Actually, less would have been enough for calculating A^{∞}. If the rows of X^{-1} are $\mathbf{w}_{1}^{T}, \ldots, \mathbf{w}_{n}^{T}$ (left eigenvectors for $\lambda_{1}, \ldots, \lambda_{n}$), and the columns of X are $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ (right eigenvectors for $\lambda_{1}, \ldots, \lambda_{n}$), then $A^{m}=X \Lambda^{m} X^{-1}=\left[\lambda_{1}^{m} \mathbf{v}_{1} \ldots \lambda_{n}^{m} \mathbf{v}_{n}\right] X^{-1}=\lambda_{1}^{m} \mathbf{v}_{1} \mathbf{w}_{1}^{T}+\ldots+\lambda_{n}^{m} \mathbf{v}_{n} \mathbf{w}_{n}^{T}$, and since here $\lambda_{i}^{m} \rightarrow 0$ for $i=2,3, \Lambda^{\infty}=\operatorname{diag}(1,0,0)$, we have $A^{\infty}=\mathbf{v}_{1} \mathbf{w}^{T}$, that is, we did not need the eigenvectors for the small eigenvalues.)

