1. Determine the eigenvalues and an orthonormal set of eigenvectors of S and write it $S=Q \Lambda Q^{T}$.

$$
S=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

Solution:

$$
|S-\lambda I|=\left|\begin{array}{ccc}
2-\lambda & -1 & 0 \\
-1 & 2-\lambda & -1 \\
0 & -1 & 2-\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-4 \lambda+3\right)+(-(2-\lambda))=(2-\lambda)\left(\lambda^{2}-4 \lambda+2\right)
$$

so $\lambda_{1}=2, \lambda_{2,3}=2 \pm \sqrt{2}$. Since there are 3 different eigenvalues, we get three orthogonal eigenvectors, which form a basis of \mathbb{R}^{3}. Eigenvectors:

$$
\begin{aligned}
& S-2 I=\left[\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 0 & -1 \\
0 & -1 & 0
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{v}_{1}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] \\
& S-(2+\sqrt{2}) I=\left[\begin{array}{ccc}
-\sqrt{2} & -1 & 0 \\
-1 & -\sqrt{2} & -1 \\
0 & -1 & -\sqrt{2}
\end{array}\right] \mapsto\left[\begin{array}{ccc}
1 & \sqrt{2} & 1 \\
0 & 1 & \sqrt{2} \\
-\sqrt{2} & -1 & 0
\end{array}\right] \mapsto\left[\begin{array}{ccc}
1 & \sqrt{2} & 1 \\
0 & 1 & \sqrt{2} \\
0 & 1 & \sqrt{2}
\end{array}\right] \\
& \mapsto\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & \sqrt{2} \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-\sqrt{2} \\
1
\end{array}\right] \\
& S-(2-\sqrt{2}) I=\left[\begin{array}{ccc}
\sqrt{2} & -1 & 0 \\
-1 & \sqrt{2} & -1 \\
0 & -1 & \sqrt{2}
\end{array}\right] \mapsto\left[\begin{array}{ccc}
1 & -\sqrt{2} & 1 \\
0 & 1 & -\sqrt{2} \\
\sqrt{2} & -1 & 0
\end{array}\right] \mapsto\left[\begin{array}{ccc}
1 & -\sqrt{2} & 1 \\
0 & 1 & -\sqrt{2} \\
0 & 1 & -\sqrt{2}
\end{array}\right] \\
& \mapsto\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -\sqrt{2} \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right]
\end{aligned}
$$

The normalized eigenvectors are

$$
\left.\begin{array}{c}
\mathbf{q}_{1}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right], \quad \mathbf{q}_{2}=\left[\begin{array}{c}
1 / 2 \\
-1 / \sqrt{2} \\
1 / 2
\end{array}\right], \quad \mathbf{q}_{3}=\left[\begin{array}{c}
1 / 2 \\
1 / \sqrt{2} \\
1 / 2
\end{array}\right] \quad \Rightarrow \quad Q=\left[\begin{array}{cc}
-1 / \sqrt{2} & 1 / 2 \\
0 & 1 / 2 \\
1 / \sqrt{2} & 1 / 2
\end{array}\right] 1 / 2
\end{array}\right] .
$$

2. Find the/a Schur decomposition of

$$
\left[\begin{array}{rr}
2 & -1 \\
1 & 4
\end{array}\right] .
$$

Solution: The eigenvalues of the matrix $A=\left[\begin{array}{rr}2 & -1 \\ 1 & 4\end{array}\right]$ are the roots of $\left|\begin{array}{cc}2-\lambda & -1 \\ 1 & 4-\lambda\end{array}\right|=\lambda^{2}-$ $6 \lambda+9=(\lambda-3)^{2}$, that is, $\lambda_{1,2}=3$. Eigenvector for $\lambda=3$:

$$
\left[\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right] \mapsto\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] \Rightarrow \mathbf{b}_{1}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
$$

Normalize this matrix and complete it to an orthonormal basis: $\mathcal{B}=\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{r}-1 \\ 1\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
Then the first column of the conjugate of A by the orthogonal matrix $Q=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]$ consisting of the vectors of \mathcal{B} will be $\left[\begin{array}{l}3 \\ 0\end{array}\right]$, so it will be an upper triangular matrix:

$$
Q^{-1} A Q=Q^{T} A Q=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & -1 \\
1 & 4
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
0 & 3
\end{array}\right]=T
$$

so $Q T Q^{-1}=Q T Q^{T}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}3 & 2 \\ 0 & 3\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]$ is a Schur decomposition of A.
3. True of false?
(i) If A has n orthogonal eigenvectors then it has n orthonormal eigenvectors.
(ii) If A is real 2×2 and its determinant is negative then A has a positive and a negative pivot.
(iii) If A is real 2×2, its determinant is negative, and A has two orthonormal eigenvectors then A has a positive and a negative pivot.
(iv) If A is symmetric and $A^{100}=0$ then $A=0$.

Solution:
(i) True because eigenvectors cannot be zero, so they can be normalized.
(ii) False. $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ has no pivots, but the determinant is -1 .
(iii) False. The matrix A given for question (ii) has two orthonormal eigenvectors, since it is symmetric.
(iv) True. Since A is symmetric, A can be diagonalized: $A=X \Lambda X^{-1}$, so $\Lambda^{100}=X^{-1} A^{100} X=$ $X^{-1} 0 X=0$, thus $\lambda_{i}^{100}=0$ for every diagonal element λ_{i} of $\Lambda \Rightarrow \lambda_{i}=0$ for all $i \Rightarrow \Lambda=0 \Rightarrow$ $A=X \Lambda X^{-1}=0$.
4. Find an a so that the following matrix has a negative eigenvalue.

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & a \\
1 & a & 2
\end{array}\right]
$$

How many negativ eigenvalues can A have? What are the signs of the pivots? What are the signs of the LPM's?
Solution: With elimination:

$$
A=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & a \\
1 & a & 2
\end{array}\right] \mapsto\left[\begin{array}{ccc}
2 & 0 & 1 \\
0 & 2 & a \\
0 & a & \frac{3}{2}
\end{array}\right] \mapsto\left[\begin{array}{ccc}
2 & 0 & 1 \\
0 & 2 & a \\
0 & 0 & \frac{3}{2}-\frac{a^{2}}{2}
\end{array}\right]
$$

The pivots are 2, 2 and $\frac{1}{2}\left(3-a^{2}\right)$, so A has a negative pivot if and only if $|a|>\sqrt{3}$, say, for $a=2$. In that case the signs of the eigenvalues are also,,,++- , and the signs of the LPM's are,,++- , since the k^{\prime} 'th LPM is the product of of the first k pivots.
We can check that for $a=2$ we indeed have two positive and a negative eigenvalue:

$$
|A-\lambda I|=\left|\begin{array}{ccc}
2-\lambda & 0 & 1 \\
0 & 2-\lambda & 2 \\
1 & 2 & 2-\lambda
\end{array}\right|=(2-\lambda)\left(\lambda^{2}-4 \lambda\right)-(2-\lambda)=(2-\lambda)\left(\lambda^{2}-4 \lambda-1\right),
$$

so the eigenvalues are $2,2 \pm \sqrt{5}$, two positive and one negative.
5. Simon says: "If A is symmetric then $N(A)$ and $C(A)$ are orthogonal subspaces." Is he right? Why? He also says: "No positive definite matrix has a 0 on the main diagonal!" Is he right now? Why?
Solution: Both statements are true. If A is symmetric then $C(A)=C\left(A^{T}\right)$, which is the orthogonal complement of $N(A)$. If A had a 0 on the diagonal, say, in the i th position then $\mathbf{e}_{i}^{T} A \mathbf{e}_{i}=a_{i i}=0$ would contradict the assumption that A is positive definite.
6. HW Find all orthogonal matrices that diagonalise

$$
A=\left[\begin{array}{rr}
31 & -8 \\
-8 & 19
\end{array}\right]
$$

7. Show that if a and b are chosen so that A and B are positive definite then C is also positive definite.

$$
A=\left[\begin{array}{cc}
1 & 3 \\
3 & a
\end{array}\right] ; \quad B=\left[\begin{array}{cc}
4 & b \\
b & 6
\end{array}\right] ; \quad C=\left[\begin{array}{cc}
a & b \\
b & a
\end{array}\right]
$$

Determine the decomposition $C=L D L^{T}$ if $a=25$ and $b=20$. Use it to find M such that $C=M^{T} M$ (Cholesky factorisation).
Solution: The LPM's of A are 1 and $a-9$, and of B are 4 and $24-b^{2}$, so A and B are positive definite if and only if $a>9$ and $b^{2}<24$. But then the LPM's of C are also positive: $a=9>0$ and $a^{2}-b^{2}>81-24=57>0$, so C is also positive definite.
For $a=25$ and $b=20$:

$$
\begin{gathered}
C=\left[\begin{array}{ll}
25 & 20 \\
20 & 25
\end{array}\right] \mapsto\left[\begin{array}{rr}
25 & 20 \\
0 & 9
\end{array}\right]=U \text { with } L=\left[\begin{array}{cc}
1 & 0 \\
4 / 5 & 1
\end{array}\right] \Rightarrow \\
C=\left[\begin{array}{ll}
25 & 20 \\
20 & 25
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
4 / 5 & 1
\end{array}\right]\left[\begin{array}{rr}
25 & 20 \\
0 & 9
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
4 / 5 & 1
\end{array}\right]\left[\begin{array}{cc}
25 & 0 \\
0 & 9
\end{array}\right]\left[\begin{array}{cc}
1 & 4 / 5 \\
0 & 1
\end{array}\right] \Rightarrow \\
C=\left[\begin{array}{cc}
1 & 0 \\
4 / 5 & 1
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & 4 / 5 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
5 & 0 \\
4 & 3
\end{array}\right]\left[\begin{array}{ll}
5 & 4 \\
0 & 3
\end{array}\right] \Rightarrow M=\left[\begin{array}{ll}
5 & 4 \\
0 & 3
\end{array}\right]
\end{gathered}
$$

8. Let

$$
S=\left[\begin{array}{rr}
\cos \vartheta & -\sin \vartheta \\
\sin \vartheta & \cos \vartheta
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 6
\end{array}\right]\left[\begin{array}{rr}
\cos \vartheta & \sin \vartheta \\
-\sin \vartheta & \cos \vartheta
\end{array}\right] .
$$

What is the determinant of S, what are the eigenvalues and eigenvectors of S ? Is S positive definite?
Solution: $S=X \Lambda X^{T}$ with $X=\left[\begin{array}{rr}\cos \vartheta & -\sin \vartheta \\ \sin \vartheta & \cos \vartheta\end{array}\right]$ orthogonal matrix, where $\Lambda=\operatorname{diag}(4,6)$. So $X^{T}=X^{-1}$, and $S=X \Lambda X^{-1}$, which implies that the diagonal elements of Λ are eigenvalues of S, and the columns of $X,\left[\begin{array}{c}\cos \vartheta \\ \sin \vartheta\end{array}\right]$ and $\left[\begin{array}{r}-\sin \vartheta \\ \cos \vartheta\end{array}\right]$ are eigenvectors corresponding to 4 and $6 . S$ is a symmetric matrix because $S=X \Lambda X^{T}$ with Λ diagonal, and the eigenvalues of S are both positive, so S is positive definite. S is similar to Λ, so $|S|=|\Lambda|=24$ (but it can also be obtained as the product of the eigenvalues, or as $|S|=|X| \cdot|\Lambda| \cdot\left|X^{T}\right|=1 \cdot 24 \cdot 1=24$).
9. Find the singular values and the $S V D$ of $A=\left[\begin{array}{rr}-1 & 2 \\ 2 & -4\end{array}\right]$. What are the eigenvalues of A ? Solution:

$$
A^{T} A=\left[\begin{array}{rr}
5 & -10 \\
-10 & 20
\end{array}\right], \quad\left|A^{T} A-\lambda I\right|=\lambda^{2}-25 \lambda, \quad \begin{array}{lllll}
\lambda_{1} & =25 & \sigma_{1} & = & 5 \\
\lambda_{2} & =0
\end{array} \quad \Sigma=\left[\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right]
$$

Eigenvectors of $A^{T} A$:

$$
\begin{gathered}
\lambda_{1}=25: \quad\left[\begin{array}{rr}
-20 & -10 \\
-10 & -5
\end{array}\right] \mapsto\left[\begin{array}{rr}
1 & 1 / 2 \\
0 & 0
\end{array}\right] \Rightarrow \mathbf{v}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}
-1 \\
2
\end{array}\right] \\
\lambda_{2}=0: \quad\left[\begin{array}{rr}
5 & -10 \\
-10 & 20
\end{array}\right] \mapsto\left[\begin{array}{rr}
1 & -2 \\
0 & 0
\end{array}\right] \Rightarrow \mathbf{v}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{gathered}
$$

$$
V=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
-1 & 2 \\
2 & 1
\end{array}\right], \quad A V=\left[\begin{array}{rr}
\sqrt{5} & 0 \\
-2 \sqrt{5} & 0
\end{array}\right]
$$

The first $r(A)$ columns of U we get as $\mathbf{u}_{i}=\frac{1}{\sigma_{i}} \mathbf{A} \mathbf{v}_{i}$, that is, by normalizing the nonzero columns of $A V$. Then we complete these to an (arbitrary) orthogonal matrix U.

$$
\begin{aligned}
& \mathbf{u}_{1}=\frac{1}{\sigma_{1}} A \mathbf{v}_{1}=\frac{1}{5}\left[\begin{array}{r}
\sqrt{5} \\
-2 \sqrt{5}
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{r}
1 \\
-2
\end{array}\right], \quad U=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right] \\
& A=\left[\begin{array}{rr}
-1 & 2 \\
2 & -4
\end{array}\right]=U \Sigma V^{T}=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1 & 2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{rr}
-1 & 2 \\
2 & 1
\end{array}\right]
\end{aligned}
$$

$|A-\lambda I|=\lambda^{2}+5 \lambda \Rightarrow$ the eigenvalues of A are -5 and 0 .
Actually, since A is symmetric, A can be diagonalized by an orthogonal matrix (ordering the eigenvalues so that their absolute values are decreasing), and then the decomposition $A=Q \Lambda Q^{-1}=$ $Q \Lambda Q^{T}$ can be modified into an SVD by factoring Λ into a diagonal matrix with nonnegative elements and a diagonal matrix with ± 1 in the main diagonal.

$$
\begin{gathered}
A=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
-1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{rr}
-5 & 0 \\
0 & 0
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{rr}
-1 & 2 \\
2 & 1
\end{array}\right]=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
-1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{rr}
-1 & 2 \\
2 & 1
\end{array}\right]= \\
\\
=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}
-1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right]
\end{gathered}
$$

10. What are the singular values and the SVD of the matrix $B=\left[\begin{array}{lll}1 & 2 & -3\end{array}\right]$?

Solution:

$$
B^{T} B=\left[\begin{array}{rrr}
1 & 2 & -3 \\
2 & 4 & -6 \\
-3 & -6 & 9
\end{array}\right]
$$

This matrix has rank 1 , so $\operatorname{dim} N\left(B^{T} B\right)=2$, hence the eigenvalues are $0,0, \lambda$, where $\lambda=0+0+\lambda=$ $\operatorname{tr} B^{T} B=14$, giving $\lambda=14$. In decreasing order, $\lambda_{1}=14, \lambda_{2}=\lambda_{3}=0$. The only singular value is $\sqrt{14}$, and $\Sigma=\left[\begin{array}{lll}\sqrt{14} & 0 & 0\end{array}\right]$. The eigenvectors of $B^{T} B$:
for $\lambda_{1}=14: \quad\left[\begin{array}{rrr}-13 & 2 & -3 \\ 2 & -10 & -6 \\ -3 & -6 & -5\end{array}\right] \mapsto\left[\begin{array}{rrr}1 & -5 & -3 \\ -13 & 2 & -3 \\ -3 & -6 & -5\end{array}\right] \mapsto\left[\begin{array}{rrr}1 & -5 & -3 \\ 0 & -63 & -42 \\ 0 & -21 & -14\end{array}\right] \mapsto$

$$
\left[\begin{array}{rrr}
1 & 0 & 1 / 3 \\
0 & 1 & 2 / 3 \\
0 & 0 & 0
\end{array}\right] \quad \Rightarrow \quad \text { special sol.: }\left[\begin{array}{c}
-1 / 3 \\
-2 / 3 \\
1
\end{array}\right] . \text { Let } \mathbf{b}_{1}=\left[\begin{array}{r}
-1 \\
-2 \\
3
\end{array}\right]
$$

for $\lambda_{2,3}=0$: $\left[\begin{array}{rrr}1 & 2 & -3 \\ 2 & 4 & -6 \\ -3 & -6 & 9\end{array}\right] \mapsto\left[\begin{array}{rrr}1 & 2 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \quad$ special solutions: $\mathbf{b}_{2}=\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right], \quad \mathbf{b}_{3}=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$
$\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is a basis of \mathbb{R}^{3} consisting of eigenvectors for $B^{T} B$, but the eigenvectors $\mathbf{b}_{2}, \mathbf{b}_{3}$ from the eigenspace for 0 are not orthogonal. We orthogonalize them:

$$
\mathbf{c}_{3}=\mathbf{b}_{3}-\frac{\mathbf{b}_{2} \cdot \mathbf{b}_{3}}{\left\|\mathbf{b}_{2}\right\|^{2}} \mathbf{b}_{2}=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]+\frac{6}{5}\left[\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right]=\frac{1}{5}\left[\begin{array}{l}
3 \\
6 \\
5
\end{array}\right], \text { or rather } \mathbf{c}_{3}=\left[\begin{array}{l}
3 \\
6 \\
5
\end{array}\right]
$$

So $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{c}_{3}\right\}$ is an orthogonal eigenbasis for $B^{T} B$, and

$$
\begin{gathered}
V=\frac{1}{\sqrt{70}}\left[\begin{array}{rrr}
-\sqrt{5} & -2 \sqrt{14} & 3 \\
-2 \sqrt{5} & \sqrt{14} & 6 \\
3 \sqrt{5} & 0 & 5
\end{array}\right], \quad B V=\frac{1}{\sqrt{70}}\left[\begin{array}{lll}
14 \sqrt{5} & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
\sqrt{14} & 0 & 0
\end{array}\right], \quad U_{1}=[1]=U \\
B=U \Sigma V^{T}=[1]\left[\begin{array}{lll}
\sqrt{14} & 0 & 0
\end{array}\right] \frac{1}{\sqrt{70}}\left[\begin{array}{rrr}
-\sqrt{5} & -2 \sqrt{5} & 3 \sqrt{5} \\
-2 \sqrt{14} & \sqrt{14} & 0 \\
3 & 6 & 5
\end{array}\right]
\end{gathered}
$$

