1. Let $M \in \operatorname{Mod}-R$ be a right R-module, B a left ideal and J a right ideal of $R, a \in M$, and U, V submodules in M. Which of the following are necessarily submodules of M ? (For the sets X, Y, the sum means $X+Y=\{x+y \mid x \in X, y \in Y\}$, the product $X Y=$ $\left\{\sum_{i} x_{i} y_{i} \mid x_{i} \in X, y_{i} \in Y \forall i\right\}$, while the annihilator Ann_{M} denotes the set of elements of M whose product with all the elements of the given subset of the ring is 0 .)
a) $a R$
b) $a B$
c) $a J$
d) $U \cap V$
e) $U \cup V$
f) $U+V$
g) $\mathrm{Ann}_{M}(B)$
h) $\operatorname{Ann}_{M}(J)$
i) $U B$
j) $U J$.
2. What can be the additive group of a (unary) module over $\mathbb{Z}, \mathbb{Z}_{3}$ or \mathbb{Z}_{6} ? Determine the number of 12 -element modules over each ring up to isomorphism.
3. a) Let $1 \in S \leq R$. Prove that every R-module is also an S-module, but the converse is not true.
b) Suppose that $I \triangleleft R$. What is the connection between the modules over R and the modules over R / I ?
4. Let $V=\mathbb{R}^{n}$ be an n-dimensional vector space over \mathbb{R}. Find a subring S of the ring of $n \times n$ matrices such that the only nontrivial S-submodule with respect to the usual vector-matrix multiplication is the following.
a) $U=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V \mid x_{1}+\ldots+x_{n}=0\right\}$
b) $U=\{(x, \ldots, x) \in V \mid x \in \mathbb{R}\}$
5. Let A, B, C be submodules of M such that $A \geq C$. Prove that $A \cap(B+C)=(A \cap B)+C$.
6. Suppose that $N \leq M \in \operatorname{Mod}-R$. Prove that M has a maximal submodule U such that $N \cap U=0$, and that for such a module U, the intersection of $N \oplus U$ with any nonzero submodule of M is nonzero. Give an example among abelian groups to show that $N \oplus U$ is not necessarily the whole M.
7. Which of the following classes of modules have the property that every module can be written as a direct sum of cyclic, or of simple modules?
a) vector spaces
b) modules over a division ring
c) finite Abelian groups
d) Abelian groups
e) modules over \mathbb{Z}_{n}
f) modules over $K[x]$, where K is a field

HW1. Consider the following set M as a right module over the ring R.

$$
M=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] \right\rvert\, a, b \in K\right\} \quad \text { és } R=\left\{\left.\left[\begin{array}{cc}
x & y \\
0 & x
\end{array}\right] \right\rvert\, x, y \in K\right\}
$$

where K is a field. Prove that every submodule of M is also a K-subspace. Determine all the 1-dimensional submodules of M. How many such submodules exist if $K=\mathbb{Z}_{5}$?

HW2. Prove that the group algebra of a nontrivial, not necessarily finite group cannot be a division algebra. (Hint: Show that $\left\{\sum_{g \in G} \lambda_{g} g \in K G \mid \sum_{g \in G} \lambda_{g}=0\right\}$ is an ideal in $K G$.)

