- **1.** Let $M \in \text{Mod-}R$ be a right *R*-module, *B* a left ideal and *J* a right ideal of *R*, $a \in M$, and *U*, *V* submodules in *M*. Which of the following are necessarily submodules of *M*? (For the sets *X*, *Y*, the sum means $X + Y = \{x + y \mid x \in X, y \in Y\}$, the product $XY = \{\sum_{i} x_i y_i \mid x_i \in X, y_i \in Y \forall i\}$, while the annihilator Ann_M denotes the set of elements of *M* whose product with all the elements of the given subset of the ring is 0.)
 - a) aR b) aB c) aJ d) $U \cap V$ e) $U \cup V$ f) U + V g) $\operatorname{Ann}_M(B)$ h) $\operatorname{Ann}_M(J)$ i) UB j) UJ.
- **2.** What can be the additive group of a (unary) module over \mathbb{Z} , \mathbb{Z}_3 or \mathbb{Z}_6 ? Determine the number of 12-element modules over each ring up to isomorphism.
- **3.** a) Let $1 \in S \leq R$. Prove that every *R*-module is also an *S*-module, but the converse is not true.
 - b) Suppose that $I \triangleleft R$. What is the connection between the modules over R and the modules over R/I?
- 4. Let $V = \mathbb{R}^n$ be an *n*-dimensional vector space over \mathbb{R} . Find a subring *S* of the ring of $n \times n$ matrices such that the only nontrivial *S*-submodule with respect to the usual vector-matrix multiplication is the following.
 - a) $U = \{(x_1, \dots, x_n) \in V \mid x_1 + \dots + x_n = 0\}$
 - b) $U = \{(x, ..., x) \in V | x \in \mathbb{R} \}$
- **5.** Let A, B, C be submodules of M such that $A \ge C$. Prove that $A \cap (B+C) = (A \cap B) + C$.
- 6. Suppose that $N \leq M \in \text{Mod-}R$. Prove that M has a maximal submodule U such that $N \cap U = 0$, and that for such a module U, the intersection of $N \oplus U$ with any nonzero submodule of M is nonzero. Give an example among abelian groups to show that $N \oplus U$ is not necessarily the whole M.
- 7. Which of the following classes of modules have the property that every module can be written as a direct sum of cyclic, or of simple modules?
 - a) vector spaces
 - b) modules over a division ring
 - c) finite Abelian groups
 - d) Abelian groups
 - e) modules over \mathbb{Z}_n
 - f) modules over K[x], where K is a field
- **HW1.** Consider the following set M as a right module over the ring R.

$$M = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b \in K \right\} \quad \text{és} \quad R = \left\{ \begin{bmatrix} x & y \\ 0 & x \end{bmatrix} \mid x, y \in K \right\},$$

where K is a field. Prove that every submodule of M is also a K-subspace. Determine all the 1-dimensional submodules of M. How many such submodules exist if $K = \mathbb{Z}_5$?

HW2. Prove that the group algebra of a nontrivial, not necessarily finite group cannot be a division algebra. (Hint: Show that $\left\{\sum_{g\in G} \lambda_g g \in KG \mid \sum_{g\in G} \lambda_g = 0\right\}$ is an ideal in KG.)