- **1.** Let $\varphi \in \operatorname{Hom}_R(M, N)$. Prove that
 - a) φ is surjective $\Leftrightarrow (\varphi \alpha = \varphi \beta \Rightarrow \alpha = \beta)$ for all $\alpha, \beta \in \operatorname{Hom}_R(N, L)$;
 - a) φ is injective $\Leftrightarrow (\alpha \varphi = \beta \varphi \Rightarrow \alpha = \beta)$ for all $\alpha, \beta \in \operatorname{Hom}_R(L, M)$;
- **2.** Let $X, Y, Z \in \text{Mod-}R$. Prove that $Y \cong X \oplus Z \Leftrightarrow$ $\exists X \xrightarrow{\alpha}_{\beta} Y \xrightarrow{\gamma}_{\delta} Z$ such that $\alpha \gamma = 0, \ \beta \delta = 0, \ \alpha \beta = \text{id}_X, \ \delta \gamma = \text{id}_Z, \ \beta \alpha + \gamma \delta = \text{id}_Y.$
- **3.** Let $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \xrightarrow{\alpha} \mathbb{Z}_2 \xleftarrow{\beta} \mathbb{Z} \oplus \mathbb{Z}$ such that $(x, y)\alpha = x + y$ and $(x, y)\beta = x$. Complete this into a commutative diagram with $\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\gamma} \mathbb{Z}_2 \oplus \mathbb{Z}_2$ in two ways, so that γ is is surjective in the first, but not surjective in the second.
- 4. Determine all the (finite) projective modules over \mathbb{Z}_n .
- 5. Prove the following two properties about injective modules, similarly to the proof of the corresponding properties of projective modules.
 - a) Every direct summand of an injective module is injective.
 - b) Any direct product of injective modules is injective.
- **6.** Prove that \mathbb{Q} is not projective as a \mathbb{Z} -module.
- **7**^{*}. Prove that every subgroup of a free abelian group is free. (Hint: Let $G = \bigoplus_{\alpha < \kappa} \langle g_{\alpha} \rangle$, where κ is a cardinality, and $G_{\alpha} = \bigoplus_{\beta < \alpha} \langle g_{\beta} \rangle$ for every ordinal number $\alpha < \kappa$. For a subgroup $H \leq G$, we define the subgroups $H_{\alpha} = H \cap G_{\alpha}$. Show that $H_{\alpha+1} \cong H_{\alpha} \oplus \mathbb{Z}$ or H_{α} for every α .)
- **HW1.** Prove that for a right *R*-module *M*, the Abelian group $\text{Hom}(R_R, M)$ is also a right *R*-module with the action of $\varphi r \ (\varphi \in \text{Hom}(R_R, M) \text{ and } r \in R)$: $x(\varphi r) := (rx)\varphi$.
- **HW2.** Determine the number of projective modules with at most 100 elements over the ring \mathbb{Z}_{180} up to isomorphism. Give another ring R for which the given Abelian groups are also projective as R-modules but there are other R-projectives with at most 100 elements.