1. Suppose $e \in R$ is an idempotent element. Prove that $R_{R}=e R \oplus(1-e) R$.
2. Write R_{R} as a direct sum of indecomposable modules. What are the dimensions of the direct components?
a) $R=K C_{4}, K=\mathbb{Z}_{2}$
b) $R=K C_{4}, K=\mathbb{R}$
c) $R=K C_{4}, K=\mathbb{C}$
d) R is the ring of 3×3 upper triangular matrices over \mathbb{R}
3. Let $0=M_{0}<M_{1}<\ldots<M_{k-1}<M_{k}=M$ be a composition series of the module M, and let U be a submodule of M. Prove that the factors of the series

$$
\begin{gathered}
0=M_{0} \cap U \leq M_{1} \cap U \leq \ldots \leq M_{k-1} \cap U \leq M_{k} \cap U=U \text { and } \\
0=\left(M_{0}+U\right) / U \leq\left(M_{1}+U\right) / U \leq \ldots \leq\left(M_{k-1}+U\right) / U \leq\left(M_{k}+U\right) / U=M / U
\end{gathered}
$$

are all simple or zero modules, and at each step the factor is zero in exactly one of the two series, and isomorphic to the corresponding factor M_{i} / M_{i-1} in the other.
4. Prove that
a) $\operatorname{Hom}\left(\underset{i \in I}{\oplus} M_{i}, N\right) \cong \prod_{i \in I} \operatorname{Hom}\left(M_{i}, N\right)$, and
b) $\operatorname{Hom}\left(M, \prod_{i \in I} N_{i}\right) \cong \prod_{i \in I} \operatorname{Hom}\left(M, N_{i}\right)$.
5. Suppose that for a submodule $U \leq R_{R}$, the factor module R_{R} / U is semisimple. Prove that $U \geq J(R)$. Give an example when $R_{R} / J(R)$ is not semisimple.
A right or left ideal I of R is nilpotent if there is an integer $k>0$ such that $I^{k}=0$
6. Prove that the following three statements are equivalent for a right ideal J of a finite dimensional algebra A.
(i) J is nilpotent.
(ii) Every simple A-module is annihilated by J.
(iii) Every finite dimensional A-module is annihilated by an appropriate power of J.
7. Prove the following statements for the Jacobson radical of a finite dimensional algebra A.
a) $J(A)$ annihilates all (semi)simple modules.
b) $J(A)$ is the smallest right ideal such that $A_{A} / J(A)$ is semisimple (i.e. it is contained by all the other right ideals with this property).
c) $J(A)$ is the largest nilpotent right ideal (i.e. it contains all the other nilpotent right ideals).
d) $J(A)$ is the only right ideal with the property that $A_{A} / J(A)$ is semisimple and $J(A)$ is nilpotent.
e) $J(A)$ is a two-sided ideal.
8. Which of the rings in problem 2 are semisimple? What is the Jacobson radical in each case?
HW1. Suppose that M is a direct summand of R_{R}, i.e. $M=e R$ for some idempotent element e. Prove that M is decomposable if and only if there is an idempotent element $f \in e R e$ such that $0 \neq f \neq e$.
HW2. Prove that $\operatorname{Hom}\left(M, \underset{i \in I}{\oplus} N_{i}\right) \cong \underset{i \in I}{\oplus} \operatorname{Hom}\left(M, N_{i}\right)$ if M is finitely generated.

