1. a) Prove that for any ring R, if $U, V \leq R_{R}$ such that R_{R} / U is semisimple and V is nilpotent then $V \leq J(R) \leq U$.
b) Prove that $\mathbb{Z} / J(\mathbb{Z})$ is not semisimple.
c) Let $R=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b\right.$ is odd $\}$ and $I=2 R$. Prove that $I=J(R)$, and I is not nilpotent.
2. Prove that the following statements are equivalent for a ring R.
a) R is semisimple.
b) Every R-module is projective.
c) Every R-module is injective.
3. Let e_{1}, \ldots, e_{n} be a complete set of orthogonal idempotents in A, and $M \in \operatorname{Mod}-A$. Take the decomposition $M=M_{1} \oplus \ldots M_{n}$ of M into a direct sum of subspaces $M_{i}=M e_{i}$. Show that the elements of $e_{i} A e_{j}$ act as linear maps from M_{i} to M_{j}, and the action of $e_{i} A e_{j}(i, j=1, \ldots, n)$ determines the action of A on M.
4. Consider the graph algebra $K \Gamma / I$, where $\Gamma: \stackrel{1}{\longrightarrow} \beta$ and $I=\left(\alpha \beta^{2}, \beta^{3}\right)$. Let $M=M_{1} \oplus M_{2}$ be a vector space such that $\operatorname{dim}_{K} M_{1}=\operatorname{dim}_{K} M_{2}=2$, and fix a basis $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ in M_{1} and $\mathcal{C}=\left\{c_{1}, c_{2}\right\}$ in M_{2}. We define the action of A as $x e_{i}=x$ if $x \in M_{i}$ and 0 if $x \in M_{j}(j \neq i)$ and the matrix of $M_{1} \xrightarrow{\alpha} M_{2}$ in $(\mathcal{B}, \mathcal{C})$ is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and the matrix of $M_{2} \xrightarrow{\beta} M_{2}$ in $(\mathcal{C}, \mathcal{C})$ is $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
a) Show that with the natural extension of the action of A, M becomes an A-module.
b) Determine the Loewy diagram of M, using the basis $\mathcal{B} \cup \mathcal{C}$.
c) Find the Loewy diagram of the submodule U of M generated by $b_{1}-b_{2}$, and the Loewy diagram of the factor module M / U.
5. Give a basis and the Loewy diagram of the indecomposable direct summands of A_{A} if $A=K \Gamma / I$, where $\Gamma: \stackrel{1}{\bullet \stackrel{\alpha}{\leftrightarrows}} \stackrel{2}{\rightleftarrows}{ }^{2}$ and
a) $I=\left(\alpha \gamma, \gamma^{2}, \gamma \beta, \alpha \beta \alpha, \beta \alpha \beta\right)$;
b) $I=\left(\alpha \gamma^{2}, \gamma^{2}-\beta \alpha, \alpha \beta\right)$.
6. Is there a graph algebra $K \Gamma / I$ such that the Loewy diagram of the regular module is the one shown below? If yes, give the graph Γ and a generator system of the ideal I.
a) ${ }_{2}^{\frac{1}{2}}{ }_{2}^{2} \oplus \stackrel{2}{2}$
b) $1_{2}^{1}{ }_{2} \oplus{ }_{1}{ }^{2}{ }_{2}$
c) ${ }_{2}^{1} \oplus{ }_{3}^{2} \oplus 3$
7. Let $A=K \Gamma / I$ be a graph algebra with the Loewy diagram $A_{A}=\underset{2}{1} \oplus \underset{2}{2}$ from problem 4 . Determine all the submodules and their factors for the module $\begin{gathered}1 \\ 2_{2} \\ 2\end{gathered}{ }_{2}^{2}$.
 over the algebra of problem 5.a).
Hf1. Determine the Jacobson radical of the ring R of 3×3 upper triangular matrices over \mathbb{Z}_{2}, and the radical of the R-module M of all 3×3 matrices over \mathbb{Z}_{2}.
Hf2. What is the Loewy diagram of the regular module of $A=K \Gamma / I$ if

$$
\Gamma: 1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2 \underset{\delta}{\stackrel{\gamma}{\rightleftarrows}} 3, \quad I=(\alpha \gamma, \beta \alpha-\gamma \delta, \delta \beta) ?
$$

