Problem Set 5

- 1. a) Prove that for any ring R, if $U, V \leq R_R$ such that R_R/U is semisimple and V is nilpotent then $V \leq J(R) \leq U$.
 - b) Prove that $\mathbb{Z}/J(\mathbb{Z})$ is not semisimple.
 - c) Let $R = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \text{ is odd} \}$ and I = 2R. Prove that I = J(R), and I is not nilpotent.
- **2.** Prove that the following statements are equivalent for a ring R.
 - a) R is semisimple.
 - b) Every *R*-module is projective.
 - c) Every *R*-module is injective.
- **3.** Let e_1, \ldots, e_n be a complete set of orthogonal idempotents in A, and $M \in Mod-A$. Take the decomposition $M = M_1 \oplus \ldots M_n$ of M into a direct sum of subspaces $M_i = Me_i$. Show that the elements of $e_i A e_j$ act as linear maps from M_i to M_j , and the action of $e_i A e_j$ $(i, j = 1, \ldots, n)$ determines the action of A on M.
- 4. Consider the graph algebra $K\Gamma/I$, where $\Gamma : \stackrel{1}{\bullet} \stackrel{\alpha}{\longrightarrow} \stackrel{2}{\bullet} \stackrel{\beta}{\longrightarrow} \text{and } I = (\alpha\beta^2, \beta^3)$. Let $M = M_1 \oplus M_2$ be a vector space such that $\dim_K M_1 = \dim_K M_2 = 2$, and fix a basis $\mathcal{B} = \{b_1, b_2\}$ in M_1 and $\mathcal{C} = \{c_1, c_2\}$ in M_2 . We define the action of A as $xe_i = x$ if $x \in M_i$ and 0 if $x \in M_j$ $(j \neq i)$ and the matrix of $M_1 \stackrel{\alpha}{\longrightarrow} M_2$ in $(\mathcal{B}, \mathcal{C})$ is $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and the matrix of $M_1 \stackrel{\alpha}{\longrightarrow} M_2$ in $(\mathcal{B}, \mathcal{C})$ is $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and the matrix of $M_1 \stackrel{\alpha}{\longrightarrow} M_2$ in $(\mathcal{B}, \mathcal{C})$ is $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

matrix of $M_2 \xrightarrow{\beta} M_2$ in $(\mathcal{C}, \mathcal{C})$ is $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

- a) Show that with the natural extension of the action of A, M becomes an A-module.
- b) Determine the Loewy diagram of M, using the basis $\mathcal{B} \cup \mathcal{C}$.
- c) Find the Loewy diagram of the submodule U of M generated by $b_1 b_2$, and the Loewy diagram of the factor module M/U.
- 5. Give a basis and the Loewy diagram of the indecomposable direct summands of A_A if
 - $A = K\Gamma/I, \text{ where } \Gamma: \xrightarrow{1} \underbrace{\alpha}_{\beta} \underbrace{\alpha}_{\beta} \gamma \text{ and}$ a) $I = (\alpha\gamma, \gamma^2, \gamma\beta, \alpha\beta\alpha, \beta\alpha\beta);$ b) $I = (\alpha\gamma^2, \gamma^2 - \beta\alpha, \alpha\beta).$
- 6. Is there a graph algebra $K\Gamma/I$ such that the Loewy diagram of the regular module is the one shown below? If yes, give the graph Γ and a generator system of the ideal I.
 - a) $\frac{1}{2} \oplus \frac{2}{2}$ b) $\frac{1}{2} \oplus \frac{2}{12}$ c) $\frac{1}{2} \oplus \frac{2}{3} \oplus 3$
- 7. Let $A = K\Gamma/I$ be a graph algebra with the Loewy diagram $A_A = \frac{1}{2} \oplus \frac{2}{2}$ from problem 4. Determine all the submodules and their factors for the module $\frac{1}{2}$.
- 8. What is the dimension of the vector spaces $\operatorname{Hom}(\frac{2}{12}, \frac{12}{2})$, and $\operatorname{Hom}(\frac{12}{2}, \frac{2}{12})$ for modules over the algebra of problem 5.a).
- **Hf1.** Determine the Jacobson radical of the ring R of 3×3 upper triangular matrices over \mathbb{Z}_2 , and the radical of the R-module M of all 3×3 matrices over \mathbb{Z}_2 .
- **Hf2.** What is the Loewy diagram of the regular module of $A = K\Gamma/I$ if

$$\Gamma: 1 \xrightarrow{\alpha}_{\beta} 2 \xrightarrow{\gamma}_{\delta} 3, \quad I = (\alpha \gamma, \beta \alpha - \gamma \delta, \delta \beta)?$$