1. Find the graph algebra which is isomorphic to the algebra of 2×2 upper triangular matrices over K.
2. Show that for $A=K^{n \times n}$, the regular module A_{A} is the direct sum of n isomorphic simple modules.
3. Let $M \in \bmod -A$ be indecomposable. Use the Fitting Lemma to prove that $R=\operatorname{End}(M)$ is a local ring, i.e. $R / J(R)$ is a division ring.
4. Consider the map $M \mapsto D(M)=\operatorname{Hom}_{K}(M, K)$ from the category mod- A to A-mod (or from A-mod to mod $-A$). Let D act on the morphisms so that for $\alpha: M \rightarrow N$, we have $D(\alpha): D(N) \rightarrow D(M)$, where $\varphi D(\alpha):=\alpha \varphi$. Prove that this D defines a vector space isomorphism from $\operatorname{Hom}(M, N)$ to $\operatorname{Hom}(D(N), D(M))$ for any modules M, N, furthermore, $D(\alpha \beta)=D(\beta) D(\alpha)$ and $D\left(1_{M}\right)=1_{D(M)}$ (so D is a contravariant functor from mod- A to A-mod).
5. Prove that in the setting of problem $4, D^{2}(M) \cong M$ for every module, and D maps projective modules to injective modules and injective modules to projective modules.
6. Suppose that A is a graph algebra with arrows $\alpha_{1}, \ldots, \alpha_{k}$, and that the module $M \in \bmod -A$ has a basis $\mathcal{B}=\left\{b_{1}, \ldots, b_{\ell}\right\}$ such that the arrows map the set $\mathcal{B} \cup\{0\}$ into itself. Let us denote by $b_{i} \alpha^{-1}$ the set $\left\{x \in \mathcal{B} \mid x \alpha=b_{i}\right\}$. Prove that $\mathcal{B}^{\prime}=\left\{b_{1}^{\prime}, \ldots, b_{k}^{\prime}\right\}$ is a basis of $D(M)$ if $b_{i}^{\prime}: b_{j} \mapsto \delta_{i j}$, and for this basis $\alpha b_{i}^{\prime}=\left(\sum b_{i} \alpha^{-1}\right)^{\prime}$.
7. Let $A_{A}=\underset{2}{1} \underset{2}{2}{ }_{2}^{2}$. Determine the Loewy diagram of ${ }_{A} A$, and by using the K-dual, determine all indecomposable injective right modules of A. Find the irreducible morphisms in ind- A going to projective or from injective modules.
8. Find the Loewy diagram of the K-dual of the modules $\underset{2}{1} \underset{2}{1}$ and $\underset{2}{1} \underset{2}{2}$ 2 over the algebra of problem 7.

Hf1. Prove that the functor D on finite dimensional A-modules maps injective morphisms to surjective morphisms, surjective morphisms to injective morphisms, and $D(M)$ is indecomposable if and only if M is indecomposable. (Remember problem $2 / 2$.)

Hf2. Determine the Loewy diagrams of the indecomposable injective modules of the algebra $A_{A}={ }_{3}^{1} \oplus_{1}{ }_{1}^{2}{ }_{3} \oplus_{1}^{3}$.

