- 1. Find the graph algebra which is isomorphic to the algebra of 2×2 upper triangular matrices over K.
- 2. Show that for $A = K^{n \times n}$, the regular module A_A is the direct sum of n isomorphic simple modules.
- **3.** Let $M \in \text{mod-}A$ be indecomposable. Use the Fitting Lemma to prove that R = End(M) is a local ring, i.e. R/J(R) is a division ring.
- 4. Consider the map $M \mapsto D(M) = \operatorname{Hom}_K(M, K)$ from the category mod-A to A-mod (or from A-mod to mod-A). Let D act on the morphisms so that for $\alpha : M \to N$, we have $D(\alpha) : D(N) \to D(M)$, where $\varphi D(\alpha) := \alpha \varphi$. Prove that this D defines a vector space isomorphism from $\operatorname{Hom}(M, N)$ to $\operatorname{Hom}(D(N), D(M))$ for any modules M, N, furthermore, $D(\alpha\beta) = D(\beta)D(\alpha)$ and $D(1_M) = 1_{D(M)}$ (so D is a contravariant functor from mod-A to A-mod).
- 5. Prove that in the setting of problem 4, $D^2(M) \cong M$ for every module, and D maps projective modules to injective modules and injective modules to projective modules.
- 6. Suppose that A is a graph algebra with arrows $\alpha_1, \ldots, \alpha_k$, and that the module $M \in \text{mod-}A$ has a basis $\mathcal{B} = \{b_1, \ldots, b_\ell\}$ such that the arrows map the set $\mathcal{B} \cup \{0\}$ into itself. Let us denote by $b_i \alpha^{-1}$ the set $\{x \in \mathcal{B} | x\alpha = b_i\}$. Prove that $\mathcal{B}' = \{b'_1, \ldots, b'_k\}$ is a basis of D(M) if $b'_i : b_j \mapsto \delta_{ij}$, and for this basis $\alpha b'_i = (\sum b_i \alpha^{-1})'$.
- 7. Let $A_A = \frac{1}{2} \oplus \frac{2}{2}$. Determine the Loewy diagram of ${}_AA$, and by using the K-dual, determine all indecomposable injective right modules of A. Find the irreducible morphisms in ind-A going to projective or from injective modules.
- 8. Find the Loewy diagram of the K-dual of the modules $1 \frac{1}{2}^{2}$ and $\frac{1}{2} \frac{2}{2}^{2}$ over the algebra of problem 7.
- **Hf1.** Prove that the functor D on finite dimensional A-modules maps injective morphisms to surjective morphisms, surjective morphisms to injective morphisms, and D(M) is indecomposable if and only if M is indecomposable. (Remember problem 2/2.)
- **Hf2.** Determine the Loewy diagrams of the indecomposable injective modules of the algebra $A_A = \frac{1}{2} \oplus \frac{1}{1} \oplus \frac{2}{3} \oplus \frac{3}{1}$.