- **1. Theorem:** Let $0 \to X \to Y \to Z \to 0$ be an Auslander–Reiten sequence.
 - 1) There is an irreducible morphism $Z' \to Z$ if and only if $Z' \stackrel{\oplus}{\leq} Y$;
 - 2) There is an irreducible morphism $X \to X'$ if and only if $X' \stackrel{\oplus}{\leq} Y$.

Prove the 'only if ' direction in both statements.

- 2. Let $A_A = P_1 \oplus P_2 \oplus \ldots \oplus P_n$ be a decomposition into indecomposable projective modules. We define a graph on $\mathcal{P} = \{P_1, \ldots, P_n\}$ so that P_i and P_j are connected with an edge if and only if $\operatorname{Hom}(P_i, P_j)$ or $\operatorname{Hom}(P_j, P_i)$ is nonzero. Let $\mathcal{K}_1, \ldots, \mathcal{K}_t$ be the connected components of this graph. Prove that every $R_j := \oplus \{P_i | P_i \in \mathcal{K}_j\}$ is an idecomposable ideal of A, so A is connected if and only if the graph on \mathcal{P} is connected. In particular, a graph algebra $K\Gamma/I$ is connected if and only if Γ is connected.
- **3.** Let A be a graph algebra such that $A_A = \frac{1}{3} \oplus \frac{2}{1} \oplus \frac{3}{1}$. Determine the Auslander-Reiten translate of the simple modules.
- 4. Determine the Auslander–Reiten graph of the following graph algebras.
 - a) $A = K\Gamma$, where $\Gamma : 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \xleftarrow{\gamma} 4$. b) $A_A = \frac{1}{2} \oplus \frac{2}{2}$
- 5. Prove that $Z(M_n(R)) = Z(R)I_n$, where I_n denotes the $n \times n$ identity matrix.
- **6.** Let $S = eR \stackrel{\oplus}{\leq} R$ be a simple module generated by the idempotent element *e*. Prove that End $S \cong eRe$. In particular, if *R* is a full matrix ring over a division ring *D* then End $S \cong D$.
- 7. Find the irreducible representations of C_3 over an arbitrary field K. Determine the submodules of KC_3 when char K = 3.
- 8. Find the irreducible representations of $C_2 \times C_2$ over an arbitrary field K.
- **9.** Prove that $J(KG) = \left\{ \sum_{g \in G} \lambda_g g \mid \sum_{g \in G} \lambda_g = 0 \right\}$ if G is a finite p-group and char K = p. How many nonisomorphic simple modules exist in mod-KG?
- **HW1.** Consider the graph algebra with Loewy diagram $A_A = \frac{1}{2} 3 \oplus \frac{1}{2} \oplus 3$. Calculate the AR translate of the module $\frac{1}{2}$.
- **HW2.** Prove that the nonzero morphism ${}^2_1 \rightarrow {}^1_2_1$ is not an irreducible morphism. (Use the result of HW1, and show that the first module cannot be a direct summand of the middle term of the AR sequence, or give a proper decomposition of the morphism, and prove that it is proper.)