1. Theorem: Let $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ be an Auslander-Reiten sequence.
1) There is an irreducible morphism $Z^{\prime} \rightarrow Z$ if and only if $Z^{\prime} \stackrel{\oplus}{\leq} Y$;
2) There is an irreducible morphism $X \rightarrow X^{\prime}$ if and only if $X^{\prime} \stackrel{\oplus}{\leq} Y$.

Prove the 'only if ' direction in both statements.
2. Let $A_{A}=P_{1} \oplus P_{2} \oplus \ldots \oplus P_{n}$ be a decomposition into indecomposable projective modules. We define a graph on $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\}$ so that P_{i} and P_{j} are connected with an edge if and only if $\operatorname{Hom}\left(P_{i}, P_{j}\right)$ or $\operatorname{Hom}\left(P_{j}, P_{i}\right)$ is nonzero. Let $\mathcal{K}_{1}, \ldots, \mathcal{K}_{t}$ be the connected components of this graph. Prove that every $R_{j}:=\oplus\left\{P_{i} \mid P_{i} \in \mathcal{K}_{j}\right\}$ is an idecomposable ideal of A, so A is connected if and only if the graph on \mathcal{P} is connected. In particular, a graph algebra $K \Gamma / I$ is connected if and only if Γ is connected.
3. Let A be a graph algebra such that $A_{A}={ }_{3}^{1} \oplus{ }_{1}^{2} \oplus{ }_{1}^{3}$. Determine the Auslander-Reiten translate of the simple modules.
4. Determine the Auslander-Reiten graph of the following graph algebras.
a) $A=K \Gamma$, where $\Gamma: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3 \stackrel{\gamma}{\longleftarrow} 4$.
b) $A_{A}={ }_{2}^{1} \oplus{ }_{2}^{2}$
5. Prove that $Z\left(M_{n}(R)\right)=Z(R) I_{n}$, where I_{n} denotes the $n \times n$ identity matrix.
6. Let $S=e R \stackrel{\oplus}{\leq} R$ be a simple module generated by the idempotent element e. Prove that End $S \cong e R e$. In particular, if R is a full matrix ring over a division ring D then End $S \cong D$.
7. Find the irreducible representations of C_{3} over an arbitrary field K. Determine the submodules of $K C_{3}$ when char $K=3$.
8. Find the irreducible representations of $C_{2} \times C_{2}$ over an arbitrary field K.
9. Prove that $J(K G)=\left\{\sum_{g \in G} \lambda_{g} g \mid \sum_{g \in G} \lambda_{g}=0\right\}$ if G is a finite p-group and char $K=p$. How many nonisomorphic simple modules exist in mod- $K G$?

HW1. Consider the graph algebra with Loewy diagram $A_{A}=\underset{1}{2} 3 \oplus \underset{2}{2} \oplus 3$. Calculate the AR translate of the module ${ }_{1}^{2}$.

HW2. Prove that the nonzero morphism ${ }_{1}^{2} \rightarrow \underset{1}{1}$ is not an irreducible morphism. (Use the result of HW1, and show that the first module cannot be a direct summand of the middle term of the AR sequence, or give a proper decomposition of the morphism, and prove that it is proper.)

