1. Let $M \in \operatorname{Mod}-R$ be a right R-module, B a left ideal and J a right ideal of R, $a \in M$, and U, V submodules in M. Which of the following are necessarily submodules of M ? (For the sets X, Y, the sum means $X+Y=\{x+y \mid x \in X, y \in Y\}$, the product $X Y=$ $\left\{\sum_{i} x_{i} y_{i} \mid x_{i} \in X, y_{i} \in Y \forall i\right\}$, while the annihilator Ann_{M} denotes the set of elements of M whose product with all the elements of the given subset of the ring is 0 .)
a) $a R$
b) $a B$
c) $a J$
d) $U \cap V$
e) $U \cup V$
f) $U+V$
g) $\mathrm{Ann}_{M}(B)$
h) $\mathrm{Ann}_{M}(J)$
i) $U B$
j) $U J$.

Solution: Submodules: $a R, a J, U \cap V, U+V, \operatorname{Ann}_{M}(B), U J$.
Counterexamples: Let $R=\mathbb{R}^{n \times n}$, and
$M=R_{R}, \quad a=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], U=\left\{\left[\begin{array}{cc}* & * \\ 0 & 0\end{array}\right]\right\}, \quad V=J=\left\{\left[\begin{array}{cc}0 & 0 \\ * & *\end{array}\right]\right\}, \quad B=\left\{\left[\begin{array}{cc}* & 0 \\ * & 0\end{array}\right]\right\}$.
For these, $a B=\left\{\left[\begin{array}{cc}* & 0 \\ 0 & 0\end{array}\right]\right\}$ is not a right module because $a B a=\left\{\left[\begin{array}{ll}0 & * \\ 0 & 0\end{array}\right]\right\} \nsubseteq a B$ (where the a on the right is meant as an element of R);
$U \cup V$ is not a right module, since it is not closed under addition, e.g. $I \in U+V$ but $I \notin U \cup V$;
$\operatorname{Ann}_{M}(J)=B$ is not a right module, e.g. $B a=\left\{\left[\begin{array}{ll}0 & * \\ 0 & *\end{array}\right]\right\} \nsubseteq B ;$
$U B=\left\{\left[\begin{array}{ll}* & 0 \\ 0 & 0\end{array}\right]\right\}$ is not a right module, as we have seen above.
2. What can be the additive group of a (unary) module over $\mathbb{Z}, \mathbb{Z}_{3}$ or \mathbb{Z}_{6} ? Determine the number of 12 -element modules over each ring up to isomorphism.
Solution: Every abelian group is a \mathbb{Z}-module.
\mathbb{Z}_{3} is a field, so the \mathbb{Z}_{3}-modules are vector spaces. Since every vector space is a direct sum of 1 -dimensional subspaces, the additive groups of \mathbb{Z}_{3}-modules are direct sums of cyclic groups of order 3 (i.e. they are elementary abelian 3 -groups).

Finally, if M is a module over \mathbb{Z}_{6}, then every element of the additive group of M has order 1, 2, 3 or 6 . Let M_{2} be the set of elements of order 2 or 1 , and M_{3} the set of elements of order 3 or 1 . These are clearly subgroups of $(M,+)$ (actually, they are submodules of M), such that $M_{2} \cap M_{3}=0$. Furthermore, any element $m \in M$ can be written as $m=7 m=(3 m)+(4 m) \in M_{2}+M_{3}$, so $M=M_{2} \oplus M_{3}$, where by the previous case (and the similar case of \mathbb{Z}_{2}-modules) M_{2} is an elementary abelian 2-group, while M_{3} is an elementary abelian 3-group.

If M is a 12 -element module over $\mathbb{Z}, \mathbb{Z}_{3}$ or \mathbb{Z}_{6}, then M as an abelian group is isomorphic to $\mathbb{Z}_{4} \oplus \mathbb{Z}_{3}$ or $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3}$ by the fundamental theorem of finite abelian groups. None of these is a \mathbb{Z}_{3}-module (they have elements of order 2 and 6), and only the second is a \mathbb{Z}_{6}-module (the other has elements of order 4 , which is not a divisor of 6), so there are 2 \mathbb{Z}-modules, $0 \mathbb{Z}_{3}$-module and $1 \mathbb{Z}_{6}$-module of 12 elements, up to isomorphism.
3. a) Let $1 \in S \leq R$. Prove that every R-module is also an S-module, but the converse is not true.
b) Suppose that $I \triangleleft R$. What is the connection between the modules over R and the modules over R / I ?

Solution: a) It is clear that any R-module is closed under multiplication by elements of S. On the other hand, the action of the subring on an S-module may not be extended to an action of R. For example, the abelian group \mathbb{Z}_{2} is a module over \mathbb{Z} but it cannot be a module over $\mathbb{R} \geq \mathbb{Z}$, since a nontrivial vector space over \mathbb{R} must have infinitely many elements.
b) Every R / I-module is also an R-module (with the multiplication $m r:=m(r+I)$). Conversely, an R-module M is an R / I-module if and only if $M I=0$ (in that case the multiplication $m(r+I)=m r$ is well-defined, and the validity of the axioms follows from the properties of the R-module).
4. Let $V=\mathbb{R}^{n}$ be an n-dimensional vector space over \mathbb{R}. Find a subring S of the ring of $n \times n$ matrices such that the only nontrivial S-submodule with respect to the usual vector-matrix multiplication is the following.
a) $U=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V \mid x_{1}+\ldots+x_{n}=0\right\}$
b) $U=\{(x, \ldots, x) \in V \mid x \in \mathbb{R}\}$

Solution: For a subspace $U \leq V$, consider the subring $S=\{\varphi \in$ End $V \mid U \varphi \leq U\} \leq$ End $V \cong \mathbb{R}^{n \times n}$. We are going to show that U is the only proper S-invariant subspace of V. If $W \not \leq U$, and $W<V$, then for the vectors $w \in W \backslash U$ and $v \in V \backslash W$ there exists a linear transformation $\varphi \in \operatorname{End} V$ such that $w \varphi=v$ and $U \varphi=0$, so $\varphi \in S$ but $W \varphi \not 又 W$. On the other hand, if $0<W<U$, then for $u \in U \backslash W, w \in W \backslash\{0\}$ there exists a map $\varphi \in S$, such that $\varphi: w \mapsto u$ (and φ is 0 on a the rest of a basis of U, which contains w), so $W \varphi \not \leq W$.

In part a), this S consists of the matrices for which the sum of every row is the same, while in part b), the same condition holds for the columns.
5. Let A, B, C be submodules of M such that $A \geq C$. Prove that $A \cap(B+C)=(A \cap B)+C$. Solution:
$A \cap(B+C) \geq(A \cap B)+C$:
$A \geq A \cap B$ and $A \geq C$ implies that $A \geq(A \cap B)+C$.
$B+C \geq B \geq A \cap B$ and $B+C \geq C$ implies that $B+C \geq(A \cap B)+C$.
So $A \cap(B+C) \geq(A \cap B)+C$.
$A \cap(B+C) \leq(A \cap B)+C:$
For an element $a=b+c \in A \cap(B+C)$ (where $a \in A, b \in B, c \in C$), $b=a-c \in A$, since $C \leq A$, so $b \in A \cap B$, consequently, $b+c \in(A \cap B)+C$.
6. Suppose that $N \leq M \in \operatorname{Mod}-R$. Prove that M has a maximal submodule U such that $N \cap U=0$, and that for such a module U, the intersection of $N \oplus U$ with any nonzero submodule of M is nonzero. Give an example among abelian groups to show that $N \oplus U$ is not necessarily the whole M.

Solution: The set \mathcal{U} of submodules disjoint from N satisfies the conditions of Zorn's lemma: if we take a chain of such modules then its union is also in \mathcal{U}. So \mathcal{U} has a maximal element, let this be U.

If for some submodule $V \leq M$, we have $V \cap(N+U)=0$, then $N \cap(U+V)=0$ $(n=u+v \Rightarrow v=n-u \in V \cap(N+U)=0 \Rightarrow v=0 \Rightarrow n=u \in N \cap U=0 \Rightarrow n=u=0)$. So by the maximality of U, we get that $U+V=U$, i.e. $V \leq U$, thus $V=V \cap(N+U)=0$.

In the abelian group \mathbb{Z}_{4}, the zero module is the only submodule which is disjoint from $\langle 2\rangle$, so this is the maximal disjoint submodule. But $0+\langle 2\rangle \neq \mathbb{Z}_{4}$.
7. Which of the following classes of modules have the property that every module can be written as a direct sum of cyclic, or of simple modules?
a) vector spaces
b) modules over a division ring
c) finite abelian groups
d) abelian groups
e) modules over \mathbb{Z}_{n}
f) modules over $K[x]$, where K is a field

Solution: a) Every vector space V has a basis: $\mathcal{B}=\left\{b_{i} \mid i \in I\right\}$, and this gives a decomposition $V=\underset{i \in I}{\oplus}\left\langle b_{i}\right\rangle$ into simple modules.
b) The same as in a).
c) According to the fundamental theorem of finite abelian groups, every finite abelian group can be written as a direct sum of cyclic modules. But they usually cannot be decomposed into a direct sum of simple module (e.g. \mathbb{Z}_{4}).
d) $(\mathbb{Q},+)$ as a \mathbb{Z}-module cannot be decomposed into the direct sum of more than one nonzero modules, since it has no disjoint submodules ($0 \neq a c \in \frac{a}{b} \mathbb{Z} \cap \frac{c}{d} \mathbb{Z}$ if $\frac{a}{b}, \frac{c}{d} \neq 0$). On the other hand, \mathbb{Q} is not a cyclic \mathbb{Z}-module, since in $\frac{a}{b} \mathbb{Z}$ every denominator (in the simplified form of the rational number) is a divisor of b. So \mathbb{Q} cannot be decomposed into a direct sum of cyclic modules.
e) The order of every element of a \mathbb{Z}_{n}-module is a divisor of n. By Prüfer's theorem every abelian groups of finite exponent can be written as a directs sum of cyclic subgroups. But these, in general, cannot be decomposed into a direct sum of simple modules.
f) We can use an argument very similar to that in d) to show that the field $K(x)$ of rational functions as a $K[x]$-module cannot be decomposed into a direct sum of cyclic submodules.
HW1. Consider the following set M as a right module over the ring R.

$$
M=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] \right\rvert\, a, b \in K\right\} \quad \text { és } R=\left\{\left.\left[\begin{array}{cc}
x & y \\
0 & x
\end{array}\right] \right\rvert\, x, y \in K\right\}
$$

where K is a field. Prove that every submodule of M is also a K-subspace. Determine all the 1 -dimensional submodules of M. How many such submodules exist if $K=\mathbb{Z}_{5}$?
HW2. Prove that the group algebra of a nontrivial, not necessarily finite group cannot be a division algebra. (Hint: Show that $\left\{\sum_{g \in G} \lambda_{g} g \in K G \mid \sum_{g \in G} \lambda_{g}=0\right\}$ is an ideal in $K G$.)

