Problem Set 1

- **1.** Let $M \in \text{Mod-}R$ be a right R-module, B a left ideal and J a right ideal of R, $a \in M$, and U,V submodules in M. Which of the following are necessarily submodules of M? (For the sets X,Y, the sum means $X + Y = \{x + y | x \in X, y \in Y\}$, the product $XY = \{\sum_{i} x_i y_i | x_i \in X, y_i \in Y \forall i\}$, while the annihilator Ann_M denotes the set of elements of M whose product with all the elements of the given subset of the ring is 0.)

Solution: Submodules: aR, aJ, $U \cap V$, U + V, $\operatorname{Ann}_M(B)$, UJ. Counterexamples: Let $R = \mathbb{R}^{n \times n}$, and

$$M = R_R, \quad a = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad U = \left\{ \begin{bmatrix} * & * \\ 0 & 0 \end{bmatrix} \right\}, \quad V = J = \left\{ \begin{bmatrix} 0 & 0 \\ * & * \end{bmatrix} \right\}, \quad B = \left\{ \begin{bmatrix} * & 0 \\ * & 0 \end{bmatrix} \right\}.$$

For these, $aB = \left\{ \begin{bmatrix} * & 0 \\ 0 & 0 \end{bmatrix} \right\}$ is not a right module because $aBa = \left\{ \begin{bmatrix} 0 & * \\ 0 & 0 \end{bmatrix} \right\} \not\subseteq aB$ (where the *a* on the right is meant as an element of *R*);

 $U \cup V$ is not a right module, since it is not closed under addition, e.g. $I \in U + V$ but $I \notin U \cup V$;

- Ann_M(J) = B is not a right module, e.g. $Ba = \left\{ \begin{bmatrix} 0 & * \\ 0 & * \end{bmatrix} \right\} \not\subseteq B;$ $UB = \left\{ \begin{bmatrix} * & 0 \\ 0 & 0 \end{bmatrix} \right\}$ is not a right module, as we have seen above.
- **2.** What can be the additive group of a (unary) module over \mathbb{Z} , \mathbb{Z}_3 or \mathbb{Z}_6 ? Determine the number of 12-element modules over each ring up to isomorphism.

Solution: Every abelian group is a \mathbb{Z} -module.

 \mathbb{Z}_3 is a field, so the \mathbb{Z}_3 -modules are vector spaces. Since every vector space is a direct sum of 1-dimensional subspaces, the additive groups of \mathbb{Z}_3 -modules are direct sums of cyclic groups of order 3 (i.e. they are elementary abelian 3-groups).

Finally, if M is a module over \mathbb{Z}_6 , then every element of the additive group of M has order 1, 2, 3 or 6. Let M_2 be the set of elements of order 2 or 1, and M_3 the set of elements of order 3 or 1. These are clearly subgroups of (M, +) (actually, they are submodules of M), such that $M_2 \cap M_3 = 0$. Furthermore, any element $m \in M$ can be written as $m = 7m = (3m) + (4m) \in M_2 + M_3$, so $M = M_2 \oplus M_3$, where by the previous case (and the similar case of \mathbb{Z}_2 -modules) M_2 is an elementary abelian 2-group, while M_3 is an elementary abelian 3-group.

If M is a 12-element module over \mathbb{Z} , \mathbb{Z}_3 or \mathbb{Z}_6 , then M as an abelian group is isomorphic to $\mathbb{Z}_4 \oplus \mathbb{Z}_3$ or $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$ by the fundamental theorem of finite abelian groups. None of these is a \mathbb{Z}_3 -module (they have elements of order 2 and 6), and only the second is a \mathbb{Z}_6 -module (the other has elements of order 4, which is not a divisor of 6), so there are 2 \mathbb{Z} -modules, 0 \mathbb{Z}_3 -module and 1 \mathbb{Z}_6 -module of 12 elements, up to isomorphism.

- **3.** a) Let $1 \in S \leq R$. Prove that every R-module is also an S-module, but the converse is not true.
 - b) Suppose that $I \triangleleft R$. What is the connection between the modules over R and the modules over R/I?

- Solution: a) It is clear that any R-module is closed under multiplication by elements of S. On the other hand, the action of the subring on an S-module may not be extended to an action of R. For example, the abelian group \mathbb{Z}_2 is a module over \mathbb{Z} but it cannot be a module over $\mathbb{R} \geq \mathbb{Z}$, since a nontrivial vector space over \mathbb{R} must have infinitely many elements.
- b) Every R/I-module is also an R-module (with the multiplication mr := m(r + I)). Conversely, an R-module M is an R/I-module if and only if MI = 0 (in that case the multiplication m(r + I) = mr is well-defined, and the validity of the axioms follows from the properties of the R-module).
- **4.** Let $V = \mathbb{R}^n$ be an n-dimensional vector space over \mathbb{R} . Find a subring S of the ring of $n \times n$ matrices such that the only nontrivial S-submodule with respect to the usual vector-matrix multiplication is the following.
 - a) $U = \{(x_1, \dots, x_n) \in V | x_1 + \dots + x_n = 0 \}$ b) $U = \{(x, \dots, x) \in V | x \in \mathbb{R} \}$

Solution: For a subspace $U \leq V$, consider the subring $S = \{\varphi \in \operatorname{End} V | U\varphi \leq U\} \leq$ End $V \cong \mathbb{R}^{n \times n}$. We are going to show that U is the only proper S-invariant subspace of V. If $W \not\leq U$, and W < V, then for the vectors $w \in W \setminus U$ and $v \in V \setminus W$ there exists a linear transformation $\varphi \in \operatorname{End} V$ such that $w\varphi = v$ and $U\varphi = 0$, so $\varphi \in S$ but $W\varphi \not\leq W$. On the other hand, if 0 < W < U, then for $u \in U \setminus W$, $w \in W \setminus \{0\}$ there exists a map $\varphi \in S$, such that $\varphi : w \mapsto u$ (and φ is 0 on a the rest of a basis of U, which contains w), so $W\varphi \not\leq W$.

In part a), this S consists of the matrices for which the sum of every row is the same, while in part b), the same condition holds for the columns.

5. Let A, B, C be submodules of M such that $A \ge C$. Prove that $A \cap (B+C) = (A \cap B) + C$. Solution:

 $\begin{array}{l} A \cap (B+C) \geq (A \cap B) + C \\ A \geq A \cap B \text{ and } A \geq C \text{ implies that } A \geq (A \cap B) + C \\ B+C \geq B \geq A \cap B \text{ and } B+C \geq C \text{ implies that } B+C \geq (A \cap B) + C \\ \text{So } A \cap (B+C) \geq (A \cap B) + C \\ A \cap (B+C) \leq (A \cap B) + C \\ \text{For an element } a = b+c \in A \cap (B+C) \text{ (where } a \in A, b \in B, c \in C), b = a-c \in A, \text{ since } \\ C \leq A, \text{ so } b \in A \cap B, \text{ consequently, } b+c \in (A \cap B) + C. \end{array}$

6. Suppose that $N \leq M \in \text{Mod-}R$. Prove that M has a maximal submodule U such that $N \cap U = 0$, and that for such a module U, the intersection of $N \oplus U$ with any nonzero submodule of M is nonzero. Give an example among abelian groups to show that $N \oplus U$ is not necessarily the whole M.

Solution: The set \mathcal{U} of submodules disjoint from N satisfies the conditions of Zorn's lemma: if we take a chain of such modules then its union is also in \mathcal{U} . So \mathcal{U} has a maximal element, let this be U.

If for some submodule $V \leq M$, we have $V \cap (N + U) = 0$, then $N \cap (U + V) = 0$ $(n = u + v \Rightarrow v = n - u \in V \cap (N + U) = 0 \Rightarrow v = 0 \Rightarrow n = u \in N \cap U = 0 \Rightarrow n = u = 0)$. So by the maximality of U, we get that U + V = U, i.e. $V \leq U$, thus $V = V \cap (N + U) = 0$. In the abelian group \mathbb{Z}_4 , the zero module is the only submodule which is disjoint from $\langle 2 \rangle$, so this is the maximal disjoint submodule. But $0 + \langle 2 \rangle \neq \mathbb{Z}_4$.

- 7. Which of the following classes of modules have the property that every module can be written as a direct sum of cyclic, or of simple modules?
 - a) vector spaces
 - b) modules over a division ring
 - c) finite abelian groups
 - d) abelian groups
 - e) modules over \mathbb{Z}_n
 - f) modules over K[x], where K is a field
 - Solution: a) Every vector space V has a basis: $\mathcal{B} = \{ b_i | i \in I \}$, and this gives a decomposition $V = \bigoplus_{i \in I} \langle b_i \rangle$ into simple modules.
 - b) The same as in a).
 - c) According to the fundamental theorem of finite abelian groups, every finite abelian group can be written as a direct sum of cyclic modules. But they usually cannot be decomposed into a direct sum of simple module (e.g. \mathbb{Z}_4).
 - d) $(\mathbb{Q}, +)$ as a \mathbb{Z} -module cannot be decomposed into the direct sum of more than one nonzero modules, since it has no disjoint submodules $(0 \neq ac \in \frac{a}{b}\mathbb{Z} \cap \frac{c}{d}\mathbb{Z} \text{ if } \frac{a}{b}, \frac{c}{d} \neq 0)$. On the other hand, \mathbb{Q} is not a cyclic \mathbb{Z} -module, since in $\frac{a}{b}\mathbb{Z}$ every denominator (in the simplified form of the rational number) is a divisor of b. So \mathbb{Q} cannot be decomposed into a direct sum of cyclic modules.
 - e) The order of every element of a \mathbb{Z}_n -module is a divisor of n. By Prüfer's theorem every abelian groups of finite exponent can be written as a direct sum of cyclic subgroups. But these, in general, cannot be decomposed into a direct sum of simple modules.
 - f) We can use an argument very similar to that in d) to show that the field K(x) of rational functions as a K[x]-module cannot be decomposed into a direct sum of cyclic submodules.
- **HW1.** Consider the following set M as a right module over the ring R.

$$M = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \ \big| \ a, b \in K \right\} \quad \acute{es} \ R = \left\{ \begin{bmatrix} x & y \\ 0 & x \end{bmatrix} \ \big| \ x, y \in K \right\},$$

where K is a field. Prove that every submodule of M is also a K-subspace. Determine all the 1-dimensional submodules of M. How many such submodules exist if $K = \mathbb{Z}_5$?

HW2. Prove that the group algebra of a nontrivial, not necessarily finite group cannot be a division algebra. (Hint: Show that $\left\{\sum_{g \in G} \lambda_g g \in KG \mid \sum_{g \in G} \lambda_g = 0\right\}$ is an ideal in KG.)