1. Let $\varphi \in \operatorname{Hom}_{R}(M, N)$. Prove that
a) φ is surjective $\Leftrightarrow(\varphi \alpha=\varphi \beta \Rightarrow \alpha=\beta)$ for all $\alpha, \beta \in \operatorname{Hom}_{R}(N, L)$;
a) φ is injective $\Leftrightarrow(\alpha \varphi=\beta \varphi \Rightarrow \alpha=\beta)$ for all $\alpha, \beta \in \operatorname{Hom}_{R}(L, M)$;

Solution: a) If φ is surjective, and $\varphi \alpha=\varphi \beta$ then for every $n \in N$, there is an $m \in M$ such that $n=m \varphi$, so $n \alpha=m \varphi \alpha=m \varphi \beta=n \beta$, proving that $\alpha=\beta$.
If φ is not surjective, let $U=\operatorname{Im} \varphi<N$, and take $\alpha, \beta: N \rightarrow N / U$ such that α is the map $n \mapsto n+U$, while $\beta=0$. Then $\varphi \alpha=\varphi \beta=0$ but $\alpha \neq \beta$.
b) If φ is injective, and $\alpha \varphi=\beta \varphi$ then for every $\ell \in L$, we have $\ell \alpha \varphi=\ell \alpha \varphi$, which implies by the injectivity of φ that $\ell \alpha=\ell \beta$. So $\alpha=\beta$.
If φ is not injective, and $U=\operatorname{Ker} \varphi \neq 0$ then let α be the natural embedding of U into M, while $\beta: U \rightarrow M$ is taken to be the zero map. Then $\alpha \varphi=\beta \varphi=0$ but $\alpha \neq \beta$.
2. Let $X, Y, Z \in \operatorname{Mod}-R$. Prove that $Y \cong X \oplus Z \Leftrightarrow$
$\exists X \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} Y \underset{\delta}{\stackrel{\gamma}{\rightleftarrows}} Z$ such that $\alpha \gamma=0, \delta \beta=0, \alpha \beta=\operatorname{id}_{X}, \delta \gamma=\operatorname{id}_{Z}, \beta \alpha+\gamma \delta=\operatorname{id}_{Y}$.
Solution: If $Y=X \oplus Z$, then the projections π_{1} and π_{2} on the first and the second component, respectively, and the corresponding embeddings ι_{1} and ι_{2} satisfy the properties $\iota_{1} \pi_{2}=0, \iota_{2} \pi_{1}=0, \iota_{1} \pi_{1}=\operatorname{id}_{X}, \iota_{2} \pi_{2}=\mathrm{id}_{Z}$ and $\pi_{1} \iota_{1}+\pi_{2} \iota_{2}=\mathrm{id}_{Y}$. If Y is only isomorphic to $X \oplus Z$, say $\varphi: Y \rightarrow X \oplus Z$ is an isomorphism, then $\alpha=\iota_{1} \varphi^{-1}, \delta=\iota_{2} \varphi^{-1}, \beta=\varphi \pi_{1}$ and $\gamma=\varphi \pi_{2}$ satisfy the given equalities.

Conversely, suppose that $\alpha, \beta, \gamma, \delta$ satisfy the given equalities. Let $U=\operatorname{Im} \alpha$ and $V=\operatorname{Im} \delta$. Then $\alpha \beta=\operatorname{id}_{X}$ implies that α is injective, and $\delta \gamma=\operatorname{id}_{Z}$ implies that δ is injective, so $X \cong U$ and $Z \cong V . U \cap V=0$, because for a $y \in U \cap V, y=x \alpha=z \delta$ for some $x \in X$ and $z \in Z$, so $x=x \alpha \beta=z \delta \beta=z 0=0 \Rightarrow y=0 \alpha=0$. Finally, $U+V=Y$, since for any $y \in Y$, we have $y=y \beta \alpha+y \gamma \delta \in \operatorname{Im} \alpha+\operatorname{Im} \delta$. Thus $Y=U \oplus V \cong X \oplus Z$.
3. Let $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \xrightarrow{\alpha} \mathbb{Z}_{2} \stackrel{\beta}{\longleftarrow} \mathbb{Z} \oplus \mathbb{Z}$ such that $(x, y) \alpha=x+y$ and $(x, y) \beta=x$. Complete this into a commutative diagram with $\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\gamma} \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ in two ways, so that γ is is surjective in the first, but not surjective in the second.
Solution: We only have to choose the image of the free generators $(1,0)$ and $(0,1)$ of $\mathbb{Z} \oplus \mathbb{Z}$ by the map $\gamma .(1,0) \beta=1$ and an inverse image of 1 by α can be $(1,0)$ or $(0,1)$. Let us choose $\gamma:(1,0) \mapsto(1,0)$. For the other generator, $(0,1) \beta=0$, and its inverse image by β can be $(0,0)$ or $(1,1)$. If we choose $\gamma:(0,1) \mapsto(0,0)$, and extend it to a homomorphism, then we get a γ, which is not surjective, but if we choose $\gamma:(0,1) \mapsto(1,1)$, then $\operatorname{Im} \gamma=\langle(1,0),(1,1)\rangle=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, so γ will be surjective.
4. Determine all the (finite) projective modules over \mathbb{Z}_{n}.

Solution: Every finite abelian group (and by Prüfer's theorem, also every infinite abelian group of bounded exponent) can be written as a direct sum of cyclic groups of prime-power order. Since direct sums and direct summands of projective modules are projective, it is enough to determine which cyclic groups of prime-power order are projective over \mathbb{Z}_{n}. If P is a cyclic projective module then it is a homomorphic image of $R=\mathbb{Z}_{n}$, and by the projectivity, it must be a direct summand of \mathbb{Z}_{n}. For $n=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ (where p_{1}, \ldots, p_{r} are different primes), $\mathbb{Z}_{n}=\mathbb{Z}_{p_{1}^{a_{1}}} \oplus \ldots \oplus \mathbb{Z}_{p_{r}^{a_{r}}}$, and this decomposition is unique by the fundamental theorem of finite abelian groups, so P must be isomorphic to one of these
summands. This means that the projective modules are exactly those whose canonical cyclic decomposition contains only cyclic groups of order $p_{1}^{a_{1}}, \ldots, p_{r}^{a_{r}}$.
5. Prove the following two properties about injective modules, similarly to the proof of the corresponding properties of projective modules.
a) Every direct summand of an injective module is injective.
b) Any direct product of injective modules is injective.

Solution:

a)

Let $Q=U \oplus V$ be an injective module, π the projection of Q onto U and ι the embedding of U into Q. Furthermore, let $\alpha: M \rightarrow N$ be an injective homomorphism, and $\beta: M \rightarrow U$. By the injectivity of Q, there is a homomorphism $\delta: N \rightarrow Q$ such that $\beta \iota=\alpha \delta$. Then for $\gamma=\delta \pi$, we have $\alpha \gamma=\alpha \delta \pi=\beta \iota \pi=\beta \operatorname{id}_{u}=\beta$, which proves the injectivity of U.
b)

Let $Q_{i}(i \in I)$ be injective modules, $\alpha: M \rightarrow N$ an injective homomorphism, β : $M \rightarrow \prod Q_{i}$, and π_{i} the projection of $\prod Q_{i}$ on the i 'th component. By the injectivity of the Q_{i} there exists a homomorphism $\gamma_{i}: N \rightarrow Q_{i}$ for every i such that $\alpha \psi_{i}=\beta \pi_{i}$. We define $\gamma: N \rightarrow \prod_{i \in I} Q_{i}$: for any $n \in N$, let $n \gamma=\left(n \gamma_{i}\right)_{i \in I} \in \prod_{i \in I} Q_{i}$. This is clearly a module homomorphism, and for any $m \in M$, we have $m \alpha \gamma=\left(m \alpha \gamma_{i}\right)_{i \in I}=$ $\left(m \beta \pi_{i}\right)_{i \in I}=m \beta$, so $\alpha \gamma=\beta$.
6. Prove that \mathbb{Q} is not projective as a \mathbb{Z}-module.

Solution: \mathbb{Q} is divisible, i.e. for every $x \in \mathbb{Q}$ and $0 \neq n \in \mathbb{Z}$ there is an element $y \in \mathbb{Q}$ such that $y n=x$. On the other hand, in a direct sum of regular \mathbb{Z}-modules no nonzero element is divisible: if $0 \neq a=\left(a_{i}\right)_{i \in I} \in F=\oplus_{i \in I} \mathbb{Z}$, and $n>\max _{i}\left|a_{i}\right|$, then $a \neq n b$ for any $b \in F$. So \mathbb{Q} cannot be a submodule of a free module, consequently, \mathbb{Q} cannot be projective.
$\mathbf{7}^{*}$. Prove that every subgroup of a free abelian group is free. (Hint: Let $G=\underset{\alpha<\kappa}{\oplus}\left\langle g_{\alpha}\right\rangle$, where κ is a cardinality, and $G_{\alpha}=\underset{\beta<\alpha}{\oplus}\left\langle g_{\beta}\right\rangle$ for every ordinal number $\alpha<\kappa$. For a subgroup $H \leq G$, we define the subgroups $H_{\alpha}=H \cap G_{\alpha}$. Show that $H_{\alpha+1} \cong H_{\alpha} \oplus \mathbb{Z}$ or H_{α} for every α.)

HW1. Prove that for a right R-module M, the Abelian group $\operatorname{Hom}\left(R_{R}, M\right)$ is also a right R module with the action of $\varphi r\left(\varphi \in \operatorname{Hom}\left(R_{R}, M\right)\right.$ and $\left.r \in R\right): x(\varphi r):=(r x) \varphi$.

HW2. Determine the number of projective modules with at most 100 elements over the ring \mathbb{Z}_{180} up to isomorphism. Give another ring R for which the given Abelian groups are also projective as R-modules but there are other R-projectives with at most 100 elements.

