- **1.** Let $\varphi \in \operatorname{Hom}_R(M, N)$. Prove that
 - a) φ is surjective \Leftrightarrow ($\varphi \alpha = \varphi \beta \Rightarrow \alpha = \beta$) for all $\alpha, \beta \in \text{Hom}_R(N, L)$;
 - a) φ is injective $\Leftrightarrow (\alpha \varphi = \beta \varphi \Rightarrow \alpha = \beta)$ for all $\alpha, \beta \in \operatorname{Hom}_R(L, M)$;
 - Solution: a) If φ is surjective, and $\varphi \alpha = \varphi \beta$ then for every $n \in N$, there is an $m \in M$ such that $n = m\varphi$, so $n\alpha = m\varphi\alpha = m\varphi\beta = n\beta$, proving that $\alpha = \beta$. If φ is not surjective, let $U = \operatorname{Im} \varphi < N$, and take $\alpha, \beta : N \to N/U$ such that α is the map $n \mapsto n + U$, while $\beta = 0$. Then $\varphi \alpha = \varphi \beta = 0$ but $\alpha \neq \beta$.
 - b) If φ is injective, and $\alpha \varphi = \beta \varphi$ then for every $\ell \in L$, we have $\ell \alpha \varphi = \ell \alpha \varphi$, which implies by the injectivity of φ that $\ell \alpha = \ell \beta$. So $\alpha = \beta$. If φ is not injective, and $U = \operatorname{Ker} \varphi \neq 0$ then let α be the natural embedding of U

into M, while $\beta: U \to M$ is taken to be the zero map. Then $\alpha \varphi = \beta \varphi = 0$ but $\alpha \neq \beta$.

2. Let $X, Y, Z \in \text{Mod-}R$. Prove that $Y \cong X \oplus Z \Leftrightarrow$ $\exists X \underset{\beta}{\longleftrightarrow} Y \underset{\delta}{\longleftrightarrow} Z$ such that $\alpha \gamma = 0, \ \delta \beta = 0, \ \alpha \beta = \text{id}_X, \ \delta \gamma = \text{id}_Z, \ \beta \alpha + \gamma \delta = \text{id}_Y.$

Solution: If $Y = X \oplus Z$, then the projections π_1 and π_2 on the first and the second component, respectively, and the corresponding embeddings ι_1 and ι_2 satisfy the properties $\iota_1\pi_2 = 0$, $\iota_2\pi_1 = 0$, $\iota_1\pi_1 = \operatorname{id}_X$, $\iota_2\pi_2 = \operatorname{id}_Z$ and $\pi_1\iota_1 + \pi_2\iota_2 = \operatorname{id}_Y$. If Y is only isomorphic to $X \oplus Z$, say $\varphi : Y \to X \oplus Z$ is an isomorphism, then $\alpha = \iota_1\varphi^{-1}$, $\delta = \iota_2\varphi^{-1}$, $\beta = \varphi\pi_1$ and $\gamma = \varphi\pi_2$ satisfy the given equalities.

Conversely, suppose that $\alpha, \beta, \gamma, \delta$ satisfy the given equalities. Let $U = \operatorname{Im} \alpha$ and $V = \operatorname{Im} \delta$. Then $\alpha\beta = \operatorname{id}_X$ implies that α is injective, and $\delta\gamma = \operatorname{id}_Z$ implies that δ is injective, so $X \cong U$ and $Z \cong V$. $U \cap V = 0$, because for a $y \in U \cap V$, $y = x\alpha = z\delta$ for some $x \in X$ and $z \in Z$, so $x = x\alpha\beta = z\delta\beta = z0 = 0 \Rightarrow y = 0\alpha = 0$. Finally, U + V = Y, since for any $y \in Y$, we have $y = y\beta\alpha + y\gamma\delta \in \operatorname{Im} \alpha + \operatorname{Im} \delta$. Thus $Y = U \oplus V \cong X \oplus Z$.

3. Let $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \xrightarrow{\alpha} \mathbb{Z}_2 \xleftarrow{\beta} \mathbb{Z} \oplus \mathbb{Z}$ such that $(x, y)\alpha = x + y$ and $(x, y)\beta = x$. Complete this into a commutative diagram with $\mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\gamma} \mathbb{Z}_2 \oplus \mathbb{Z}_2$ in two ways, so that γ is is surjective in the first, but not surjective in the second.

Solution: We only have to choose the image of the free generators (1,0) and (0,1) of $\mathbb{Z} \oplus \mathbb{Z}$ by the map γ . $(1,0)\beta = 1$ and an inverse image of 1 by α can be (1,0) or (0,1). Let us choose γ : $(1,0) \mapsto (1,0)$. For the other generator, $(0,1)\beta = 0$, and its inverse image by β can be (0,0) or (1,1). If we choose γ : $(0,1) \mapsto (0,0)$, and extend it to a homomorphism, then we get a γ , which is not surjective, but if we choose γ : $(0,1) \mapsto (1,1)$, then $\operatorname{Im} \gamma = \langle (1,0), (1,1) \rangle = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, so γ will be surjective.

4. Determine all the (finite) projective modules over \mathbb{Z}_n .

Solution: Every finite abelian group (and by Prüfer's theorem, also every infinite abelian group of bounded exponent) can be written as a direct sum of cyclic groups of prime-power order. Since direct sums and direct summands of projective modules are projective, it is enough to determine which cyclic groups of prime-power order are projective over \mathbb{Z}_n . If P is a cyclic projective module then it is a homomorphic image of $R = \mathbb{Z}_n$, and by the projectivity, it must be a direct summand of \mathbb{Z}_n . For $n = p_1^{a_1} \cdots p_r^{a_r}$ (where p_1, \ldots, p_r are different primes), $\mathbb{Z}_n = \mathbb{Z}_{p_1^{a_1}} \oplus \ldots \oplus \mathbb{Z}_{p_r^{a_r}}$, and this decomposition is unique by the fundamental theorem of finite abelian groups, so P must be isomorphic to one of these

summands. This means that the projective modules are exactly those whose canonical cyclic decomposition contains only cyclic groups of order $p_1^{a_1}, \ldots, p_r^{a_r}$.

- **5.** Prove the following two properties about injective modules, similarly to the proof of the corresponding properties of projective modules.
 - a) Every direct summand of an injective module is injective.
 - b) Any direct product of injective modules is injective.

Solution:

a)

Let $Q = U \oplus V$ be an injective module, π the projection of Q onto U and ι the embedding of U into Q. Furthermore, let $\alpha : M \to N$ be an injective homomorphism, and $\beta : M \to U$. By the injectivity of Q, there is a homomorphism $\delta : N \to Q$ such that $\beta \iota = \alpha \delta$. Then for $\gamma = \delta \pi$, we have $\alpha \gamma = \alpha \delta \pi = \beta \iota \pi = \beta \operatorname{id}_u = \beta$, which proves the injectivity of U.

b)

Let Q_i $(i \in I)$ be injective modules, $\alpha : M \to N$ an injective homomorphism, $\beta : M \to \prod Q_i$, and π_i the projection of $\prod Q_i$ on the *i*'th component. By the injectivity of the Q_i there exists a homomorphism $\gamma_i : N \to Q_i$ for every *i* such that $\alpha \psi_i = \beta \pi_i$. We define $\gamma : N \to \prod_{i \in I} Q_i$: for any $n \in N$, let $n\gamma = (n\gamma_i)_{i \in I} \in \prod_{i \in I} Q_i$. This is clearly a module homomorphism, and for any $m \in M$, we have $m\alpha\gamma = (m\alpha\gamma_i)_{i \in I} = (m\beta\pi_i)_{i \in I} = m\beta$, so $\alpha\gamma = \beta$.

6. Prove that \mathbb{Q} is not projective as a \mathbb{Z} -module.

Solution: \mathbb{Q} is divisible, i.e. for every $x \in \mathbb{Q}$ and $0 \neq n \in \mathbb{Z}$ there is an element $y \in \mathbb{Q}$ such that yn = x. On the other hand, in a direct sum of regular \mathbb{Z} -modules no nonzero element is divisible: if $0 \neq a = (a_i)_{i \in I} \in F = \bigoplus_{i \in I} \mathbb{Z}$, and $n > \max_i |a_i|$, then $a \neq nb$ for any $b \in F$. So \mathbb{Q} cannot be a submodule of a free module, consequently, \mathbb{Q} cannot be projective.

- **7**^{*}. Prove that every subgroup of a free abelian group is free. (Hint: Let $G = \bigoplus_{\alpha < \kappa} \langle g_{\alpha} \rangle$, where κ is a cardinality, and $G_{\alpha} = \bigoplus_{\beta < \alpha} \langle g_{\beta} \rangle$ for every ordinal number $\alpha < \kappa$. For a subgroup $H \leq G$, we define the subgroups $H_{\alpha} = H \cap G_{\alpha}$. Show that $H_{\alpha+1} \cong H_{\alpha} \oplus \mathbb{Z}$ or H_{α} for every α .)
- **HW1.** Prove that for a right R-module M, the Abelian group $\operatorname{Hom}(R_R, M)$ is also a right R-module with the action of $\varphi r \ (\varphi \in \operatorname{Hom}(R_R, M) \text{ and } r \in R): \ x(\varphi r) := (rx)\varphi.$
- **HW2.** Determine the number of projective modules with at most 100 elements over the ring \mathbb{Z}_{180} up to isomorphism. Give another ring R for which the given Abelian groups are also projective as R-modules but there are other R-projectives with at most 100 elements.