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1. Suppose e ∈ R is an idempotent element. Prove that RR = eR⊕(1− e)R.

Solution: It is enough to show that { e, 1−e } is a complete set of orthogonal idempotents.
Indeed, e is idempotent by assumption, (1 − e)2 = 1 − 2e + e2 = 1 − 2e + e = 1 − e, so
1− e is also idempotent, e(1− e) = (1− e)e = e− e2 = 0, so they are orthogonal, finally,
e+ (1− e) = 1, so they form a complete set of idempotents.

2. Write RR as a direct sum of indecomposable modules. What are the dimensions of the
direct components?
a) R = KC4, K = Z2

b) R = KC4, K = R

c) R = KC4, K = C

d) R is the ring of 3× 3 upper triangular matrices over R

Solution: In a), b) and c), let the group G ∼= C4 be generated by the element a. Then
KG = {x + ya + za2 + ua3 |x, y, z, u ∈ K }. For the decomposition, we need to find
idempotents different from 0 and 1.

a) Here we can use that x2 = x and 2x = 0 for every x ∈ Z2. So (x+ ya+ za2+ua3)2 =
x + ya2 + z + ua2 = (x + z) + (y + u)a2, and this is equal to x + ya + za2 + ua3 if
and only if y = z = u = 0, so this element is either 0 or 1. This means that KGKG is
indecomposable.

b) Note that for any H ≤ G, the sum of the elements sH of H is nilpotent or almost
idempotent: sHh

′ = (
∑

h∈H

h)h′ =
∑

h∈H

hh′ = sH , so s2H = |H|sH . If charK | |H|, then

this gives s2H = 0, if not, then e = 1

|H|sH is idempotent.

Use this for H = { 1, a2 }. Then we get that e = 1

2
(1+ a2) and 1− e = 1

2
(1− a2) form

a complete set of orthogonal idempotents. But f = 1

4
sG is also idempotent, and it is

in eKG (since 1 + a+ a2 + a3 = (1 + a2)(1 + a)). But eKG = e2KG = eKGe, so by
the statement of HW1, f , e− f and 1− e generate direct components of the regular
module. The dimensions of the three summands are 1, 1 and 2, so the only question
is whether (1− e)KG is decomposable. If we try to find a decomposition of the last
summand, we have to solve the equation ((1− a2)(x+ ya))2 = (1− a2)(x+ ya), that
is, 2x2 − 2y2 = x and 4xy = y, which gives either y = 0 and x = 0 or 1

2
, producing

the trivial idempotents, or it leads to an equation 2y2 = −1

8
, which has no solution in

R. So the three components are indecomposable.

c) The system of idempotents found in part b) also give a decomposition of CG, but here
the last idempotent is decomposable: the equation in the previous part gives x = 1

4

and y = 1

4
i, and this produces two more 1-dimensional components: (1 − a2)KG =

(1+ ia)(1− a2)KG⊕(1− ia)(1− a2)KG. The four components are 1-dimensional, so
they must be simple modules, thus indecomposable.

d) The idempotent matrices e1 = diag(1, 0, 0), e2 = diag(0, 1, 0) and e3 = diag(0, 0, 1)
form a complete set of orthogonal idempotents, and HW1 shows that the components
are indecomposable, since eiRei = eiR is one-dimensional, and its only idempotents
are 0 and ei. The component eiR consists of those matrices of R which have all 0’s
outside its i’th row, so the dimensions of the components are 3, 2 and 1.

3. Let 0 = M0 < M1 < . . . < Mk−1 < Mk = M be a composition series of the module M ,
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and let U be a submodule of M . Prove that the factors of the series

0 =M0 ∩ U ≤M1 ∩ U ≤ . . . ≤Mk−1 ∩ U ≤Mk ∩ U = U and

0 = (M0 + U)/U ≤ (M1 + U)/U ≤ . . . ≤ (Mk−1 + U)/U ≤ (Mk + U)/U =M/U

are all simple or zero modules, and at each step the factor is zero in exactly one of the two
series, and isomorphic to the corresponding factor Mi/Mi−1 in the other.

Solution:

(Mi+1 ∩ U)/(Mi ∩ U) =(Mi+1 ∩ U)/((Mi+1 ∩Mi) ∩ U)=(Mi+1 ∩ U)/(Mi ∩(Mi+1 ∩ U))
∼=((Mi+1 ∩ U) +Mi)/Mi

∼= (Mi+1 ∩ (U +Mi))/Mi ≤Mi+1/Mi

(using the first isomorphism theorem and the modular identity from Problem Set 1/5). The
last module is supposed to be simple, so (Mi+1∩U)/(Mi∩U) is either zero or ∼=Mi+1/Mi.

((Mi+1 + U)/U)/((Mi + U)/U) ∼=(Mi+1 + U)/(Mi + U) = ((Mi +Mi+1) + U)/(Mi + U)

=((Mi + U) +Mi+1)/(Mi + U)
∼=Mi+1/((Mi + U) ∩Mi+1)

=Mi+1/(Mi + (U ∩Mi+1)),

and this is a factor of Mi+1/Mi by the second isomorphism theorem, so
((Mi+1 + U)/U)/((Mi + U)/U) is either zero or it is isomorphic to Mi+1/Mi.

If the ith factor of the first series is zero, then (Mi+1∩U)+Mi =Mi, soMi+1∩U ≤Mi,
so the factor of the second series is isomorphic to Mi+1/(Mi + (U ∩Mi+1) =Mi+1/Mi.

If the factor of the second series is zero, then (Mi + U) ∩Mi+1 = Mi+1, so Mi+1 ≤
Mi+U , so the factor of the first series is isomorphic to (Mi+1 ∩ (U +Mi)/Mi =Mi+1/Mi.

4. Prove that
a) Hom(⊕

i∈I
Mi, N) ∼=

∏

i∈I Hom(Mi, N), and

b) Hom(M,
∏

i∈I Ni) ∼=
∏

i∈I Hom(M,Ni).

Solution: a) Let Mi
ιi−→ ⊕

i∈I
Mi be the embedding of the i’th component. Then to any

morphism ϕ : ⊕
i∈I

Mi → N , we can assign (ιiϕ)i∈I ∈
∏

i∈I Hom(Mi, N), which is

clearly a homomorphism of abelian groups. This homomorphism is also bijective,
because for any (ψi)i∈I ∈

∏

i∈I Hom(Mi, N), there is a unique morphism ϕ : ⊕
i∈I

Mi →

N such that ψi = ιiϕ for every i, according to the categorical definition of a coproduct.

b) Let
∏

i∈I Ni
πi−→Ni be the projection to the i’th component. Then to any ϕ : M →

∏

i∈I Ni, we can assign (ϕπi)i∈I ∈
∏

i∈I Hom(M,Ni), which is clearly a homomor-
phism of abelian groups. This homomorphism is also bijective, because for any
(ψi)i∈I ∈

∏

i∈I Hom(M,Ni), there is a unique morphism ϕ : M →
∏

i∈I Ni such
that ψi = ϕπi for every i, according to the categorical definition of a product.
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5. Suppose that for a submodule U ≤ RR, the factor module RR/U is semisimple. Prove that
U ≥ J(R). Give an example when RR/J(R) is not semisimple.

Solution: If RR/U = ⊕
i∈I

Si, where Si are simple, then for every i there is an epimorphism

ϕ̃i : RR/U → Si such that
⋂

i∈I

Ker ϕ̃i = 0̄, and then for the natural extensions ϕi : RR → Si

of ϕ̃i, we have
⋂

i∈I

Kerϕi ≤ U . Since Imϕi are simple, this intersection contains J(R), thus

J(R) ≤ U .

For R = Z, the maximal ideals are pZ, where p are primes, and
⋂

p prime

pZ = 0 (there

is no nonzero integer which is divisible by all primes), so J(Z) = 0. But Z/J(Z) = Z is
not semisimple, since it cannot be written as a direct sum of simple modules (such a direct
sum would have only elements of finite order).

A right or left ideal I of R is nilpotent if there is an integer k > 0 such that Ik = 0

6. Prove that the following three statements are equivalent for a right ideal J of a finite
dimensional algebra A.
(i) J is nilpotent.
(ii) Every simple A-module is annihilated by J .

(iii) Every finite dimensional A-module is annihilated by an appropriate power of J .

Solution: (i)⇒(ii): Suppose S is simple. Then SJ ≤ S ⇒ SJ = 0 or SJ = S. But if
SJ = S, then S = SJ = SJJ = . . . = SJk = S0 = 0 for a large enough k, which is a
contradiction.
(ii)⇒(iii): A finite dimensional module has a finite composition series 0 = M0 < M1 <
. . . < Mk =M , and by condition (ii), J annililates every composition factor, i.e. Mi+1J ≤
Mi for every i, so MJk ≤Mk−1J

k−1 ≤ . . . ≤M1J = 0.
(iii)⇒(i): We can apply condition (iii) to AA: there is a k such that 0 = AJk ⊇ 1Jk = Jk.

7. Prove the following statements for the Jacobson radical of a finite dimensional algebra A.
a) J(A) annihilates all (semi)simple modules.
b) J(A) is the smallest right ideal such that AA/J(A) is semisimple (i.e. it is contained

by all the other right ideals with this property).
c) J(A) is the largest nilpotent right ideal (i.e. it contains all the other nilpotent right

ideals).
d) J(A) is the only right ideal with the property that AA/J(A) is semisimple and J(A)

is nilpotent.

e) J(A) is a two-sided ideal.

Solution: a) Let M be a simple module. Then any 0 6= m ∈M generates M , i.e. mA =
M . There is a homomorphism ϕ : AA → M such that 1 7→ m. Its kernel is maximal
in AA, so it contains J(A). But then 0 = J(A)ϕ = 1ϕJ(A) = mJ(A), thus J(A)
annihilates every element of M . It follows from this that (⊕Si)J = ⊕(SiJ) = ⊕ 0 = 0
if all modules Si are simple.

b) J(A) is the intersection of all maximal right ideals, but since A is finite dimensional,
it is the intersection of finitely many maximal right ideals. Thus A/J(A) can be
embedded into the direct product of finitely many simple modules, but that is also
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the direct sum of those simple modules, so A/J(A) can be embedded into a semisimple
module, which implies that A/J(A) itself is semisimple.
On the other hand, if the factor by some right ideal U is semisimple then by Problem 5,
J(A) ≤ U .

c) From part a), and Problem 6 it follows that J(A) is nilpotent. On the other hand,
every nilpotent right ideal U annihilates all simple modules, and so all semisimple
modules, as well, thus (A/J(A))U = 0̄, and this means that U ≤ AU ≤ J(A).

d) Part b) and c) shows that J(A) is nilpotent, and A/J(A) is semisimple. On the other
hand, if some U ≤ AA is nilpotent, and A/U is a semisimple module, then by part b)
and c), J(A) ≤ U and U ≤ J(A), so U = J(A).

e) J(A)k = 0 implies that (AJ(A))k = A(J(A)A)k−1J(A) ≤ AJ(A)k = A0 = 0, so
AJ(A) is also nilpotent. But J(A) contains all nilpotent right ideals by part c), so
AJ(A) ≤ J(A).

8. Which of the rings in problem 2 are semisimple? What is the Jacobson radical in each
case?

Solution: We use the notation A instead of R, to remind ourselves that all four rings are
actually finite dimensional algebras.
a) Let us observe that (1−a)4 = 0, and A is commutative, so ((1−a)A)4 = (1−a)4A4 ≤

0A = 0, thus (1−a)A ≤ J(A) by 7.c). This ideal also contains 1−a2 = (1−a)(1+a)
and 1 − a3 = (1 − a)(1 + a + a2), so it is at least 3-dimensional. But J(A) 6= A if
A is a finite dimensional algebra, so J(A) = (1 − a)A. In fact, this ideal consists of
those elements, for which the sum of the coefficients is 0. This also means that A is
not semisimple.

b) J(A) is the direct sum of the Jacobson radical of the three components, so it is either
1-dimensional or 0, depending on whether the 2-dimensional component is simple or
not. But there is a 2-dimensional simple module over RC4: the generator element

a can act on R
2 by the matrix m =

[

0 1
−1 0

]

. The order of this matrix is 4, so

a 7→ m gives a homomorphism from RC4 to EndR2, and this vector space has no
nontrivial m-invariant subspace, since m has no real eigenvector. So AA must have a
2-dimensional simple module among its composition factors, thus the last component
must be simple, so A is semisimple and J(A) = 0.

c) The solution of 2.c) shows that AA is the direct sum of four 1-dimensional simple
modules, so A is semisimple and J(A) = 0.

d) The upper triangular matrices whose diagonal elements are all 0 clearly form an ideal
I, and this ideal is also nilpotent (its third power is 0), so this ideal is included in
J(A). On the other hand, A/I ∼= {diagonal matrices } ∼= R⊕R⊕R is semisimple, so
J(A) = I.

HW1. Suppose that M is a direct summand of RR, i.e. M = eR for some idempotent element e.
Prove that M is decomposable if and only if there is an idempotent element f ∈ eRe such
that 0 6= f 6= e.

HW2. Prove that Hom(M, ⊕
i∈I

Ni) ∼= ⊕
i∈I

Hom(M,Ni) if M is finitely generated.


