1. Suppose $e \in R$ is an idempotent element. Prove that $R_{R}=e R \oplus(1-e) R$.

Solution: It is enough to show that $\{e, 1-e\}$ is a complete set of orthogonal idempotents. Indeed, e is idempotent by assumption, $(1-e)^{2}=1-2 e+e^{2}=1-2 e+e=1-e$, so $1-e$ is also idempotent, $e(1-e)=(1-e) e=e-e^{2}=0$, so they are orthogonal, finally, $e+(1-e)=1$, so they form a complete set of idempotents.
2. Write R_{R} as a direct sum of indecomposable modules. What are the dimensions of the direct components?
a) $R=K C_{4}, K=\mathbb{Z}_{2}$
b) $R=K C_{4}, K=\mathbb{R}$
c) $R=K C_{4}, K=\mathbb{C}$
d) R is the ring of 3×3 upper triangular matrices over \mathbb{R}

Solution: In a), b) and c), let the group $G \cong C_{4}$ be generated by the element a. Then $K G=\left\{x+y a+z a^{2}+u a^{3} \mid x, y, z, u \in K\right\}$. For the decomposition, we need to find idempotents different from 0 and 1 .
a) Here we can use that $x^{2}=x$ and $2 x=0$ for every $x \in \mathbb{Z}_{2}$. So $\left(x+y a+z a^{2}+u a^{3}\right)^{2}=$ $x+y a^{2}+z+u a^{2}=(x+z)+(y+u) a^{2}$, and this is equal to $x+y a+z a^{2}+u a^{3}$ if and only if $y=z=u=0$, so this element is either 0 or 1 . This means that $K G_{K G}$ is indecomposable.
b) Note that for any $H \leq G$, the sum of the elements s_{H} of H is nilpotent or almost idempotent: $s_{H} h^{\prime}=\left(\sum_{h \in H} h\right) h^{\prime}=\sum_{h \in H} h h^{\prime}=s_{H}$, so $s_{H}^{2}=|H| s_{H}$. If char $K||H|$, then this gives $s_{H}^{2}=0$, if not, then $e=\frac{1}{|H|} s_{H}$ is idempotent.
Use this for $H=\left\{1, a^{2}\right\}$. Then we get that $e=\frac{1}{2}\left(1+a^{2}\right)$ and $1-e=\frac{1}{2}\left(1-a^{2}\right)$ form a complete set of orthogonal idempotents. But $f=\frac{1}{4} s_{G}$ is also idempotent, and it is in $e K G$ (since $1+a+a^{2}+a^{3}=\left(1+a^{2}\right)(1+a)$). But $e K G=e^{2} K G=e K G e$, so by the statement of HW1, $f, e-f$ and $1-e$ generate direct components of the regular module. The dimensions of the three summands are 1,1 and 2 , so the only question is whether $(1-e) K G$ is decomposable. If we try to find a decomposition of the last summand, we have to solve the equation $\left(\left(1-a^{2}\right)(x+y a)\right)^{2}=\left(1-a^{2}\right)(x+y a)$, that is, $2 x^{2}-2 y^{2}=x$ and $4 x y=y$, which gives either $y=0$ and $x=0$ or $\frac{1}{2}$, producing the trivial idempotents, or it leads to an equation $2 y^{2}=-\frac{1}{8}$, which has no solution in \mathbb{R}. So the three components are indecomposable.
c) The system of idempotents found in part b) also give a decomposition of $\mathbb{C} G$, but here the last idempotent is decomposable: the equation in the previous part gives $x=\frac{1}{4}$ and $y=\frac{1}{4} i$, and this produces two more 1-dimensional components: $\left(1-a^{2}\right) K G=$ $(1+i a)\left(1-a^{2}\right) K G \oplus(1-i a)\left(1-a^{2}\right) K G$. The four components are 1-dimensional, so they must be simple modules, thus indecomposable.
d) The idempotent matrices $e_{1}=\operatorname{diag}(1,0,0), e_{2}=\operatorname{diag}(0,1,0)$ and $e_{3}=\operatorname{diag}(0,0,1)$ form a complete set of orthogonal idempotents, and HW1 shows that the components are indecomposable, since $e_{i} R e_{i}=e_{i} \mathbb{R}$ is one-dimensional, and its only idempotents are 0 and e_{i}. The component $e_{i} R$ consists of those matrices of R which have all 0 's outside its i 'th row, so the dimensions of the components are 3,2 and 1 .
3. Let $0=M_{0}<M_{1}<\ldots<M_{k-1}<M_{k}=M$ be a composition series of the module M,
and let U be a submodule of M. Prove that the factors of the series

$$
\begin{gathered}
0=M_{0} \cap U \leq M_{1} \cap U \leq \ldots \leq M_{k-1} \cap U \leq M_{k} \cap U=U \text { and } \\
0=\left(M_{0}+U\right) / U \leq\left(M_{1}+U\right) / U \leq \ldots \leq\left(M_{k-1}+U\right) / U \leq\left(M_{k}+U\right) / U=M / U
\end{gathered}
$$

are all simple or zero modules, and at each step the factor is zero in exactly one of the two series, and isomorphic to the corresponding factor M_{i} / M_{i-1} in the other.
Solution:

$$
\begin{aligned}
\left(M_{i+1} \cap U\right) /\left(M_{i} \cap U\right) & =\left(M_{i+1} \cap U\right) /\left(\left(M_{i+1} \cap M_{i}\right) \cap U\right)=\left(M_{i+1} \cap U\right) /\left(M_{i} \cap\left(M_{i+1} \cap U\right)\right) \\
& \cong\left(\left(M_{i+1} \cap U\right)+M_{i}\right) / M_{i} \cong\left(M_{i+1} \cap\left(U+M_{i}\right)\right) / M_{i} \leq M_{i+1} / M_{i}
\end{aligned}
$$

(using the first isomorphism theorem and the modular identity from Problem Set 1/5). The last module is supposed to be simple, so $\left(M_{i+1} \cap U\right) /\left(M_{i} \cap U\right)$ is either zero or $\cong M_{i+1} / M_{i}$.

$$
\begin{aligned}
\left(\left(M_{i+1}+U\right) / U\right) /\left(\left(M_{i}+U\right) / U\right) & \cong\left(M_{i+1}+U\right) /\left(M_{i}+U\right)=\left(\left(M_{i}+M_{i+1}\right)+U\right) /\left(M_{i}+U\right) \\
& =\left(\left(M_{i}+U\right)+M_{i+1}\right) /\left(M_{i}+U\right) \\
& \cong M_{i+1} /\left(\left(M_{i}+U\right) \cap M_{i+1}\right) \\
& =M_{i+1} /\left(M_{i}+\left(U \cap M_{i+1}\right)\right),
\end{aligned}
$$

and this is a factor of M_{i+1} / M_{i} by the second isomorphism theorem, so $\left(\left(M_{i+1}+U\right) / U\right) /\left(\left(M_{i}+U\right) / U\right)$ is either zero or it is isomorphic to M_{i+1} / M_{i}.

If the i th factor of the first series is zero, then $\left(M_{i+1} \cap U\right)+M_{i}=M_{i}$, so $M_{i+1} \cap U \leq M_{i}$, so the factor of the second series is isomorphic to $M_{i+1} /\left(M_{i}+\left(U \cap M_{i+1}\right)=M_{i+1} / M_{i}\right.$.

If the factor of the second series is zero, then $\left(M_{i}+U\right) \cap M_{i+1}=M_{i+1}$, so $M_{i+1} \leq$ $M_{i}+U$, so the factor of the first series is isomorphic to $\left(M_{i+1} \cap\left(U+M_{i}\right) / M_{i}=M_{i+1} / M_{i}\right.$.
4. Prove that
a) $\operatorname{Hom}\left(\underset{i \in I}{\oplus} M_{i}, N\right) \cong \prod_{i \in I} \operatorname{Hom}\left(M_{i}, N\right)$, and
b) $\operatorname{Hom}\left(M, \prod_{i \in I} N_{i}\right) \cong \prod_{i \in I} \operatorname{Hom}\left(M, N_{i}\right)$.

Solution: a) Let $M_{i} \xrightarrow{\iota_{i}} \underset{i \in I}{\oplus} M_{i}$ be the embedding of the i 'th component. Then to any morphism $\varphi: \underset{i \in I}{\oplus} M_{i} \rightarrow N$, we can assign $\left(\iota_{i} \varphi\right)_{i \in I} \in \prod_{i \in I} \operatorname{Hom}\left(M_{i}, N\right)$, which is clearly a homomorphism of abelian groups. This homomorphism is also bijective, because for any $\left(\psi_{i}\right)_{i \in I} \in \prod_{i \in I} \operatorname{Hom}\left(M_{i}, N\right)$, there is a unique morphism $\varphi: \underset{i \in I}{ } M_{i} \rightarrow$ N such that $\psi_{i}=\iota_{i} \varphi$ for every i, according to the categorical definition of a coproduct.
b) Let $\prod_{i \in I} N_{i} \xrightarrow{\pi_{i}} N_{i}$ be the projection to the i 'th component. Then to any $\varphi: M \rightarrow$ $\prod_{i \in I} N_{i}$, we can assign $\left(\varphi \pi_{i}\right)_{i \in I} \in \prod_{i \in I} \operatorname{Hom}\left(M, N_{i}\right)$, which is clearly a homomorphism of abelian groups. This homomorphism is also bijective, because for any $\left(\psi_{i}\right)_{i \in I} \in \prod_{i \in I} \operatorname{Hom}\left(M, N_{i}\right)$, there is a unique morphism $\varphi: M \rightarrow \prod_{i \in I} N_{i}$ such that $\psi_{i}=\varphi \pi_{i}$ for every i, according to the categorical definition of a product.
5. Suppose that for a submodule $U \leq R_{R}$, the factor module R_{R} / U is semisimple. Prove that $U \geq J(R)$. Give an example when $R_{R} / J(R)$ is not semisimple.
Solution: If $R_{R} / U=\underset{i \in I}{\oplus} S_{i}$, where S_{i} are simple, then for every i there is an epimorphism $\tilde{\varphi}_{i}: R_{R} / U \rightarrow S_{i}$ such that $\bigcap_{i \in I} \operatorname{Ker} \tilde{\varphi}_{i}=\overline{0}$, and then for the natural extensions $\varphi_{i}: R_{R} \rightarrow S_{i}$ of $\tilde{\varphi}_{i}$, we have $\bigcap_{i \in I} \operatorname{Ker} \varphi_{i} \leq U$. Since $\operatorname{Im} \varphi_{i}$ are simple, this intersection contains $J(R)$, thus $J(R) \leq U$.

For $R=\mathbb{Z}$, the maximal ideals are $p \mathbb{Z}$, where p are primes, and $\bigcap_{p \text { prime }} p \mathbb{Z}=0$ (there is no nonzero integer which is divisible by all primes), so $J(\mathbb{Z})=0$. But $\mathbb{Z} / J(\mathbb{Z})=\mathbb{Z}$ is not semisimple, since it cannot be written as a direct sum of simple modules (such a direct sum would have only elements of finite order).

A right or left ideal I of R is nilpotent if there is an integer $k>0$ such that $I^{k}=0$
6. Prove that the following three statements are equivalent for a right ideal J of a finite dimensional algebra A.
(i) J is nilpotent.
(ii) Every simple A-module is annihilated by J.
(iii) Every finite dimensional A-module is annihilated by an appropriate power of J.

Solution: (i) \Rightarrow (ii): Suppose S is simple. Then $S J \leq S \Rightarrow S J=0$ or $S J=S$. But if $S J=S$, then $S=S J=S J J=\ldots=S J^{k}=S 0=0$ for a large enough k, which is a contradiction.
(ii) \Rightarrow (iii): A finite dimensional module has a finite composition series $0=M_{0}<M_{1}<$ $\ldots<M_{k}=M$, and by condition (ii), J annililates every composition factor, i.e. $M_{i+1} J \leq$ M_{i} for every i, so $M J^{k} \leq M_{k-1} J^{k-1} \leq \ldots \leq M_{1} J=0$.
(iii) $\Rightarrow\left(\right.$ i): We can apply condition (iii) to A_{A} : there is a k such that $0=A J^{k} \supseteq 1 J^{k}=J^{k}$.
7. Prove the following statements for the Jacobson radical of a finite dimensional algebra A.
a) $J(A)$ annihilates all (semi)simple modules.
b) $J(A)$ is the smallest right ideal such that $A_{A} / J(A)$ is semisimple (i.e. it is contained by all the other right ideals with this property).
c) $J(A)$ is the largest nilpotent right ideal (i.e. it contains all the other nilpotent right ideals).
d) $J(A)$ is the only right ideal with the property that $A_{A} / J(A)$ is semisimple and $J(A)$ is nilpotent.
e) $J(A)$ is a two-sided ideal.

Solution: a) Let M be a simple module. Then any $0 \neq m \in M$ generates M, i.e. $m A=$ M. There is a homomorphism $\varphi: A_{A} \rightarrow M$ such that $1 \mapsto m$. Its kernel is maximal in A_{A}, so it contains $J(A)$. But then $0=J(A) \varphi=1 \varphi J(A)=m J(A)$, thus $J(A)$ annihilates every element of M. It follows from this that $\left(\oplus S_{i}\right) J=\oplus\left(S_{i} J\right)=\oplus 0=0$ if all modules S_{i} are simple.
b) $J(A)$ is the intersection of all maximal right ideals, but since A is finite dimensional, it is the intersection of finitely many maximal right ideals. Thus $A / J(A)$ can be embedded into the direct product of finitely many simple modules, but that is also
the direct sum of those simple modules, so $A / J(A)$ can be embedded into a semisimple module, which implies that $A / J(A)$ itself is semisimple.
On the other hand, if the factor by some right ideal U is semisimple then by Problem 5 , $J(A) \leq U$.
c) From part a), and Problem 6 it follows that $J(A)$ is nilpotent. On the other hand, every nilpotent right ideal U annihilates all simple modules, and so all semisimple modules, as well, thus $(A / J(A)) U=\overline{0}$, and this means that $U \leq A U \leq J(A)$.
d) Part b) and c) shows that $J(A)$ is nilpotent, and $A / J(A)$ is semisimple. On the other hand, if some $U \leq A_{A}$ is nilpotent, and A / U is a semisimple module, then by part b) and c), $J(A) \leq U$ and $U \leq J(A)$, so $U=J(A)$.
e) $J(A)^{k}=0$ implies that $(A J(A))^{k}=A(J(A) A)^{k-1} J(A) \leq A J(A)^{k}=A 0=0$, so $A J(A)$ is also nilpotent. But $J(A)$ contains all nilpotent right ideals by part c), so $A J(A) \leq J(A)$.
8. Which of the rings in problem 2 are semisimple? What is the Jacobson radical in each case?
Solution: We use the notation A instead of R, to remind ourselves that all four rings are actually finite dimensional algebras.
a) Let us observe that $(1-a)^{4}=0$, and A is commutative, so $((1-a) A)^{4}=(1-a)^{4} A^{4} \leq$ $0 A=0$, thus $(1-a) A \leq J(A)$ by 7.c). This ideal also contains $1-a^{2}=(1-a)(1+a)$ and $1-a^{3}=(1-a)\left(1+a+a^{2}\right)$, so it is at least 3 -dimensional. But $J(A) \neq A$ if A is a finite dimensional algebra, so $J(A)=(1-a) A$. In fact, this ideal consists of those elements, for which the sum of the coefficients is 0 . This also means that A is not semisimple.
b) $J(A)$ is the direct sum of the Jacobson radical of the three components, so it is either 1 -dimensional or 0 , depending on whether the 2 -dimensional component is simple or not. But there is a 2 -dimensional simple module over $\mathbb{R} C_{4}$: the generator element a can act on \mathbb{R}^{2} by the matrix $m=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$. The order of this matrix is 4 , so $a \mapsto m$ gives a homomorphism from $\mathbb{R} C_{4}$ to End \mathbb{R}^{2}, and this vector space has no nontrivial m-invariant subspace, since m has no real eigenvector. So A_{A} must have a 2-dimensional simple module among its composition factors, thus the last component must be simple, so A is semisimple and $J(A)=0$.
c) The solution of 2.c) shows that A_{A} is the direct sum of four 1-dimensional simple modules, so A is semisimple and $J(A)=0$.
d) The upper triangular matrices whose diagonal elements are all 0 clearly form an ideal I, and this ideal is also nilpotent (its third power is 0), so this ideal is included in $J(A)$. On the other hand, $A / I \cong\{$ diagonal matrices $\} \cong \mathbb{R} \oplus \mathbb{R} \oplus \mathbb{R}$ is semisimple, so $J(A)=I$.

HW1. Suppose that M is a direct summand of R_{R}, i.e. $M=e R$ for some idempotent element e. Prove that M is decomposable if and only if there is an idempotent element $f \in e R e$ such that $0 \neq f \neq e$.
HW2. Prove that $\operatorname{Hom}\left(M, \underset{i \in I}{\oplus} N_{i}\right) \cong \underset{i \in I}{\oplus} \operatorname{Hom}\left(M, N_{i}\right)$ if M is finitely generated.

