1. a) Prove that for any ring R, if $U, V \leq R_{R}$ such that R_{R} / U is semisimple and V is nilpotent then $V \leq J(R) \leq U$.
b) Prove that $\mathbb{Z} / J(\mathbb{Z})$ is not semisimple.
c) Let $R=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b\right.$ is odd $\}$ and $I=2 R$. Prove that $I=J(R)$, and I is not nilpotent.
Solution: a) If $R_{R} / U=\underset{i \in I}{\oplus} S_{i}$, where S_{i} are simple, then for every i there is an epimorphism $\tilde{\varphi}_{i}: R_{R} / U \rightarrow S_{i}$ such that $\bigcap_{i \in I} \operatorname{Ker} \tilde{\varphi}_{i}=\overline{0}$, and then for the natural extensions $\varphi_{i}: R_{R} \rightarrow S_{i}$ of $\tilde{\varphi}_{i}$, we have $\bigcap_{i \in I} \operatorname{Ker} \varphi_{i} \leq U$. Since $\operatorname{Im} \varphi_{i}$ are simple, this intersection contains $J(R)$, thus $J(R) \leq U$.
If V is nilpotent, say, $V^{k}=0$, then V annihilates every simple module: if S is simple and $S V \neq 0$, then $S V=S$, so $S=S V=S V V=\ldots=S V^{k}=0$, a contradiction. Thus $V \leq R V \leq M$ for every maximal submodule M of R_{R}, which gives that $V \leq J(R)$.
b) For $R=\mathbb{Z}$, the maximal ideals are $p \mathbb{Z}$, where p are primes, and $\bigcap_{p \text { prime }} p \mathbb{Z}=0$ (there is no nonzero integer which is divisible by all primes), so $J(\mathbb{Z})=0$. But $\mathbb{Z} / J(\mathbb{Z})=\mathbb{Z}$ is not semisimple, since it cannot be written as a direct sum of simple modules, i.e. of cyclic groups of prime order (such a direct sum would have only elements of finite order).
c) I is an ideal of R_{R}, and every element of $R \backslash I$ is invertible, so every proper (right) ideal is included in I. This means that I is the unique maximal right ideal of R, so $I=J(R)$. On the other hand, R has no nilpotent elements, so it cannot have a nontrivial nilpotent (right) ideal.
2. Prove that the following statements are equivalent for a ring R.
a) R is semisimple.
b) Every R-module is projective.
c) Every R-module is injective.

Solution: We know that the following statements are equivalent to a), b) and c), respectively.
a^{\prime} ') In every R-module every submodule is a direct summand.
b') For every epimorphism $\varphi: M \rightarrow N, \operatorname{Ker} \varphi$ is a direct summand of M.
c') For every monomorphism $\varphi: M \rightarrow N, \operatorname{Im} \varphi$ is a direct summand of N.
It is clear that a^{\prime}) implies both b^{\prime}) and c^{\prime}). On the other hand, for any $U \leq M, U$ is the kernel of the natural epimorphism $M \rightarrow M / U$, and the image of the natural embedding $U \rightarrow M$, so if either b') or c') holds, then a') also holds.
3. Let e_{1}, \ldots, e_{n} be a complete set of orthogonal idempotents in A, and $M \in \operatorname{Mod}-A$. Take the decomposition $M=M_{1} \oplus \ldots M_{n}$ of M into a direct sum of subspaces $M_{i}=M e_{i}$. Show that the elements of $e_{i} A e_{j}$ act as linear maps from M_{i} to M_{j}, and the action of $e_{i} A e_{j}$ $(i, j=1, \ldots, n)$ determines the action of A on M.
Solution: M is indeed the direct sum of the vector spaces M_{i}, since every element $m \in M$ can be written as $m 1=m e_{1}+m e_{2}+\ldots+m e_{n}$, and for any element $m e_{i} \in M_{i},\left(m e_{i}\right) e_{i}=$ $m e_{i}$ but $M_{j} e_{i}=M e_{j} e_{i}=0$, so $M_{i} \cap \sum_{j \neq i} M_{j}=0$.

For an element $a \in e_{i} A e_{j}, M_{k} a=M e_{k} a=0$ if $k \neq i$, and $M a \leq M_{j}$, so the action of a is determined by its restriction to M_{i}, and it maps to M_{j}.
A can be written as the direct sum of the subspaces $e_{i} A e_{j}$, so the action $m \mapsto m a$, where $a=\sum_{i, j} e_{i} a e_{j}$ is determined by the action of the components $e_{i} a e_{j}$, mapping M_{i} to M_{j}.
4. Consider the graph algebra $K \Gamma / I$, where $\Gamma: \stackrel{1}{\longrightarrow} \stackrel{2}{ }{ }^{\circ}$ and $I=\left(\alpha \beta^{2}, \beta^{3}\right)$. Let $M=$ $M_{1} \oplus M_{2}$ be a vector space such that $\operatorname{dim}_{K} M_{1}=\operatorname{dim}_{K} M_{2}=2$, and fix a basis $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ in M_{1} and $\mathcal{C}=\left\{c_{1}, c_{2}\right\}$ in M_{2}. We define the action of A as $x e_{i}=x$ if $x \in M_{i}$ and 0 if $x \in M_{j}(j \neq i)$, the matrix of $M_{1} \xrightarrow{\alpha} M_{2}$ in $(\mathcal{B}, \mathcal{C})$ is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and the matrix of $M_{2} \xrightarrow{\beta} M_{2}$ in $(\mathcal{C}, \mathcal{C})$ is $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.
a) Show that with the natural extension of the action of A, M becomes an A-module.
b) Determine the Loewy diagram of M, using the basis $\mathcal{B} \cup \mathcal{C}$.
c) Find the Loewy diagram of the submodule U of M generated by $b_{1}-b_{2}$, and the Loewy diagram of the factor module M / U.
Solution: a) If we define the action of the arrows (and the idempotents) so that an arrow $i \mapsto j$ is a linear map from M_{i} to M_{j} and the i th idempotent acts as the identity map on M_{i}, while they are 0 on all the other components, and then extend this action naturally to the paths and linear combinations of paths, then we clearly get a $К Г$ module. So we only have to check that the generator elements (and consequently all elements) of the ideal I annihilate M. Indeed, the matrix of $\beta^{2}: M_{2} \rightarrow M_{2}$ is $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]^{2}=0$, so both $\alpha \beta^{2}$ and β^{3} acts as the 0 map. This means by Problem 1/3.b) that M is also a $K \Gamma / I$-module.
b) We can see from the given matrices that $b_{1} \underset{\alpha}{\longrightarrow} c_{2}, b_{2} \underset{\alpha}{\longrightarrow} c_{1}, c_{1} \underset{\beta}{\longrightarrow} c_{2}$, and $c_{2} \underset{\beta}{\longrightarrow} 0$ (we write matrices on the right, so the images of the basis elements are coded in the rows of the matrix). In a diagram:

c) $b_{1}-b_{2} \in M_{1},\left(b_{1}-b_{2}\right) \alpha=c_{2}-c_{1} \in M_{2},\left(c_{2}-c_{1}\right) \beta=-c_{2} \in M_{2},-c_{2} \beta=0$, and $b_{1}-b_{2}, c_{2}-c_{1}$ and $-c_{2}$ are linearly independent, so the Loewy diagram of U is ${\underset{2}{2}}_{1}^{2}$. On the other hand, M / U is generated by $b_{1}+U \in \bar{M}_{1}$ such that $b_{1} \alpha \in U$ (and naturally, $b_{1} \beta=0$), so M / U is the simple module with Loewy diagram 1. (Actually, the basis $\left\{-b_{1}, b_{1}-b_{2}, c_{2}-c_{1},-c_{2}\right\}$ gives the same Loewy diagram for M as the original, and then we can see the submodule and the factor as part of the diagram for M.)
5. Give a basis and the Loewy diagram of the indecomposable direct summands of A_{A} if $A=K \Gamma / I$, where $\Gamma: \stackrel{1}{\stackrel{\alpha}{\rightleftarrows}} \stackrel{2}{\rightleftarrows}{ }_{\beta}^{2}$ and
a) $I=\left(\alpha \gamma, \gamma^{2}, \gamma \beta, \alpha \beta \alpha, \beta \alpha \beta\right)$;
b) $I=\left(\alpha \gamma^{2}, \gamma^{2}-\beta \alpha, \alpha \beta\right)$.

Solution:

$$
\text { a) } A_{A}=\underset{1}{1} \oplus \underset{2}{1}{ }_{2}^{2}
$$

b) $A_{A}=\underset{{ }_{2}}{\underset{2}{1}} \oplus \underset{2}{2} \underset{{ }_{2}^{2}{ }_{2}}{2}$.
6. Is there a graph algebra $K \Gamma / I$ such that the Loewy diagram of the regular module is the one shown below? If yes, give the graph Γ and a generator system of the ideal I.
a) $\stackrel{\underset{2}{2}}{\underset{2}{2}} \oplus \stackrel{2}{2}$
b) ${ }_{1}^{1} 2{ }_{2} \oplus_{1}^{2}{ }_{2}$
c) ${ }_{2}^{1} \oplus{ }_{3}^{2} \oplus 3$

Solution: a) There is no such algebra, since the graph of that algebra could only be

but it can be seen from the second component that $\beta^{2}=0$, while in the first component $\alpha \beta^{2} \neq 0$, giving a contradiction.
b) The graph of the algebra is

and $I=\left(\alpha^{2}, \beta \gamma, \alpha \beta-\beta \delta, \gamma \alpha, \gamma \beta, \delta^{2}, \delta \gamma\right)$.
c) The graph of the algebra is $1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$, and $I=(\alpha \beta)$.
7. Let $A=K \Gamma / I$ be a graph algebra with the Loewy diagram $A_{A}=\underset{2}{1} \oplus \underset{2}{2}$ from problem 4 .

Solution: The graph of the algebra is Γ :

and $A=K \Gamma /\left(\alpha \beta^{2}, \beta^{3}\right)$. Let the basis elements of ${\underset{2}{2}}_{2}^{2}$ be b, c_{1}, c_{2}, c_{3}, where $M_{1}:=M e_{1}=$ $\langle b\rangle_{K}, M_{2}:=M e_{2}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle_{K}$ such that the module is

Let $U \leq M, U_{1}:=U e_{1} \leq M_{1}$ and $U_{2}:=U e_{2} \leq M_{2}$. If $U_{1} \neq 0$, then $U_{1}=M_{1}=\langle b\rangle_{K}$, so $b A=\left\langle b, c_{2}, c_{3}\right\rangle_{K} \leq U$, thus either $U=M$ or U is 3-dimensional with Loewy diagram ${ }_{2}^{1}$. Now suppose that $U_{1}=0$, so $U \leq M_{2}=c_{1} A$. If U contains an element $u=\lambda c_{1}+\mu c_{2}+\nu c_{3}$, where $\lambda \neq 0$, then $u \beta=\lambda c_{2}+\mu c_{3} \in U$ and $u \beta^{2}=\lambda c_{3}$, and these generate the whole
$M_{2}={\underset{2}{2}}_{2}^{2}$. If $\lambda=0$ for all $u \in U$, but $\mu \neq 0$ for some, then $u \beta=\mu c_{3} \in U$ gives that $U=\left\langle c_{2}, c_{3}\right\rangle_{K}={ }_{2}^{2}$. If $\lambda=\mu=0$ for all $u \in U$ but $U \neq 0$, then $U=\left\langle c_{3}\right\rangle=1$. Finally, U may be the zero module. So M has only 6 submodules, with Loewy diagrams:

$$
\begin{array}{cccccc}
1 \underset{2}{2}, & \stackrel{1}{2}, & \stackrel{2}{2}, & \stackrel{2}{2}, & 2, & 0 \\
2
\end{array}
$$

and their factor modules are

$$
0, \quad 2, \quad 1, \quad 1 \oplus 2, \quad{ }_{2}^{2}, \quad \begin{gathered}
12 \\
2
\end{gathered} .
$$

8. What is the dimension of the vector spaces $\operatorname{Hom}\left(\mathcal{1}_{2}^{2},{ }_{2}^{1}{ }^{2}\right)$, and $\operatorname{Hom}\left({ }_{2}{ }_{2}{ }^{2}, 1_{1}{ }^{2}{ }_{2}\right)$ for modules over the algebra of problem 5.a).
Solution: Let $M={ }_{1}{ }^{2}$ and $N={ }_{2}{ }_{2}{ }^{2}$. The generator element of M is in $M e_{2}$, so it can only be mapped into the two-dimensional space $N e_{2}$, and there exist two such independent homomorphisms: if we factor M with the simple submodule 1 , then the factor module ${ }_{2}^{2}$ can be embedded into N, or we can embed $M / \operatorname{rad} M=2$ into the socle of N. So $\operatorname{dim}_{K} \operatorname{Hom}\left(1_{1}^{2}{ }_{2},{ }_{2}{ }^{2}\right)=2$.

There is no monomorphism of N to M (since both modules are 3-dimensional, this would be an isomorphism), and every nonzero submodule of N contains the socle 2 , so the homomorphisms from N to M go through $1 \oplus 2 \rightarrow{ }_{1}{ }_{2}$. But $1 \oplus 2$ can only go into the socle of M. So $\operatorname{Hom}(N, M) \cong \operatorname{End}(1 \oplus 2)$, and the latter is generated by the independent morphisms $\pi_{1} \iota_{1}$ and $\pi_{2} \iota_{2}$. So $\operatorname{dim}_{K} \operatorname{Hom}\left({ }_{2}{ }_{2}^{2},{ }_{1}^{2}{ }_{2}\right)=2$.
Hf1. Determine the Jacobson radical of the ring R of 3×3 upper triangular matrices over \mathbb{Z}_{2}, and the radical of the R-module M of all 3×3 matrices over \mathbb{Z}_{2}.
Hf2. What is the Loewy diagram of the regular module of $A=K \Gamma / I$ if

$$
\Gamma: 1 \underset{\beta}{\stackrel{\alpha}{\rightleftarrows}} 2 \underset{\delta}{\stackrel{\gamma}{\rightleftarrows}} 3, \quad I=(\alpha \gamma, \beta \alpha-\gamma \delta, \delta \beta) ?
$$

