Problem Set 5

- **1.** a) Prove that for any ring R, if $U, V \leq R_R$ such that R_R/U is semisimple and V is nilpotent then $V \leq J(R) \leq U$.
 - b) Prove that $\mathbb{Z}/J(\mathbb{Z})$ is not semisimple.
 - c) Let $R = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \text{ is odd} \right\}$ and I = 2R. Prove that I = J(R), and I is not nilpotent.

Solution: a) If $R_R/U = \bigoplus_{i \in I} S_i$, where S_i are simple, then for every *i* there is an epimorphism $\tilde{\varphi}_i : R_R/U \to S_i$ such that $\bigcap_{i \in I} \operatorname{Ker} \tilde{\varphi}_i = \bar{0}$, and then for the natural extensions $\varphi_i : R_R \to S_i$ of $\tilde{\varphi}_i$, we have $\bigcap_{i \in I} \operatorname{Ker} \varphi_i \leq U$. Since $\operatorname{Im} \varphi_i$ are simple, this intersection contains J(R), thus $J(R) \leq U$.

If V is nilpotent, say, $V^k = 0$, then V annihilates every simple module: if S is simple and $SV \neq 0$, then SV = S, so $S = SV = SVV = \ldots = SV^k = 0$, a contradiction. Thus $V \leq RV \leq M$ for every maximal submodule M of R_R , which gives that $V \leq J(R)$.

- b) For $R = \mathbb{Z}$, the maximal ideals are $p\mathbb{Z}$, where p are primes, and $\bigcap_{p \text{ prime}} p\mathbb{Z} = 0$ (there is no nonzero integer which is divisible by all primes), so $J(\mathbb{Z}) = 0$. But $\mathbb{Z}/J(\mathbb{Z}) = \mathbb{Z}$ is not semisimple, since it cannot be written as a direct sum of simple modules, i.e. of cyclic groups of prime order (such a direct sum would have only elements of finite order).
- c) I is an ideal of R_R , and every element of $R \setminus I$ is invertible, so every proper (right) ideal is included in I. This means that I is the unique maximal right ideal of R, so I = J(R). On the other hand, R has no nilpotent elements, so it cannot have a nontrivial nilpotent (right) ideal.
- **2.** Prove that the following statements are equivalent for a ring R.
 - a) R is semisimple.
 - b) Every R-module is projective.
 - c) Every R-module is injective.

Solution: We know that the following statements are equivalent to a), b) and c), respectively.

- a') In every R-module every submodule is a direct summand.
- b') For every epimorphism $\varphi: M \to N$, Ker φ is a direct summand of M.

c') For every monomorphism $\varphi: M \to N$, Im φ is a direct summand of N.

It is clear that a') implies both b') and c'). On the other hand, for any $U \leq M$, U is the kernel of the natural epimorphism $M \to M/U$, and the image of the natural embedding $U \to M$, so if either b') or c') holds, then a') also holds.

3. Let e_1, \ldots, e_n be a complete set of orthogonal idempotents in A, and $M \in Mod-A$. Take the decomposition $M = M_1 \oplus \ldots M_n$ of M into a direct sum of subspaces $M_i = Me_i$. Show that the elements of e_iAe_j act as linear maps from M_i to M_j , and the action of e_iAe_j $(i, j = 1, \ldots, n)$ determines the action of A on M.

Solution: M is indeed the direct sum of the vector spaces M_i , since every element $m \in M$ can be written as $m1 = me_1 + me_2 + \ldots + me_n$, and for any element $me_i \in M_i$, $(me_i)e_i = me_i$ but $M_je_i = Me_je_i = 0$, so $M_i \cap \sum_{i \neq i} M_j = 0$. For an element $a \in e_i A e_j$, $M_k a = M e_k a = 0$ if $k \neq i$, and $M a \leq M_j$, so the action of a is determined by its restriction to M_i , and it maps to M_j .

A can be written as the direct sum of the subspaces $e_i A e_j$, so the action $m \mapsto ma$, where $a = \sum_{i,j} e_i a e_j$ is determined by the action of the components $e_i a e_j$, mapping M_i to M_j .

4. Consider the graph algebra $K\Gamma/I$, where $\Gamma : \stackrel{1}{\bullet} \stackrel{\alpha}{\longrightarrow} \stackrel{2}{\frown} \stackrel{\beta}{\rightarrow} and I = (\alpha\beta^2, \beta^3)$. Let $M = M_1 \oplus M_2$ be a vector space such that $\dim_K M_1 = \dim_K M_2 = 2$, and fix a basis $\mathcal{B} = \{b_1, b_2\}$ in M_1 and $\mathcal{C} = \{c_1, c_2\}$ in M_2 . We define the action of A as $xe_i = x$ if $x \in M_i$ and 0 if $x \in M_j$ $(j \neq i)$, the matrix of $M_1 \stackrel{\alpha}{\longrightarrow} M_2$ in $(\mathcal{B}, \mathcal{C})$ is $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and the matrix of $M_2 \stackrel{\beta}{\longrightarrow} M_2$ in $(\mathcal{C}, \mathcal{C})$ is $\begin{bmatrix} 0 & 1 \end{bmatrix}$

in $(\mathcal{C}, \mathcal{C})$ is $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

- a) Show that with the natural extension of the action of A, M becomes an A-module.
- b) Determine the Loewy diagram of M, using the basis $\mathcal{B} \cup \mathcal{C}$.
- c) Find the Loewy diagram of the submodule U of M generated by $b_1 b_2$, and the Loewy diagram of the factor module M/U.
- Solution: a) If we define the action of the arrows (and the idempotents) so that an arrow $i \mapsto j$ is a linear map from M_i to M_j and the *i*th idempotent acts as the identity map on M_i , while they are 0 on all the other components, and then extend this action naturally to the paths and linear combinations of paths, then we clearly get a $K\Gamma$ -module. So we only have to check that the generator elements (and consequently all elements) of the ideal I annihilate M. Indeed, the matrix of $\beta^2 : M_2 \to M_2$ is $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^2 = 0$, so both $\alpha\beta^2$ and β^3 acts as the 0 map. This means by Problem 1/3.b)

that \vec{M} is also a $K\Gamma/I$ -module.

b) We can see from the given matrices that $b_1 \xrightarrow{\alpha} c_2$, $b_2 \xrightarrow{\alpha} c_1$, $c_1 \xrightarrow{\beta} c_2$, and $c_2 \xrightarrow{\beta} 0$ (we write matrices on the right, so the images of the basis elements are coded in the rows of the matrix). In a diagram:

5. Give a basis and the Loewy diagram of the indecomposable direct summands of A_A if

$$A = K\Gamma/I, \text{ where } \Gamma: \stackrel{1}{\bullet} \stackrel{\alpha}{\underset{\beta}{\longrightarrow}} \stackrel{2}{\overset{\gamma}{\longrightarrow}} \circ nd$$

a) $I = (\alpha\gamma, \gamma^2, \gamma\beta, \alpha\beta\alpha, \beta\alpha\beta);$ b) $I = (\alpha\gamma^2, \gamma^2 - \beta\alpha, \alpha\beta).$

Solution: a)
$$A_A = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{1}{2}^2$$

b) $A_A = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{1}{2}^2$.

6. Is there a graph algebra $K\Gamma/I$ such that the Loewy diagram of the regular module is the one shown below? If yes, give the graph Γ and a generator system of the ideal I.

a) $\frac{1}{2} \oplus \frac{2}{2}$ b) $\frac{1}{2} \oplus \frac{2}{12}$ c) $\frac{1}{2} \oplus \frac{2}{3} \oplus 3$

Solution: a) There is no such algebra, since the graph of that algebra could only be

but it can be seen from the second component that $\beta^2 = 0$, while in the first component $\alpha\beta^2 \neq 0$, giving a contradiction.

b) The graph of the algebra is

and $I = (\alpha^2, \beta\gamma, \alpha\beta - \beta\delta, \gamma\alpha, \gamma\beta, \delta^2, \delta\gamma).$

- c) The graph of the algebra is $1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$, and $I = (\alpha \beta)$.
- **7.** Let $A = K\Gamma/I$ be a graph algebra with the Loewy diagram $A_A = \frac{1}{2} \oplus \frac{2}{2}$ from problem 4. Determine all the submodules and their factors for the module $\frac{1}{2}$.

Solution: The graph of the algebra is Γ :

$$\stackrel{1}{\longrightarrow} \stackrel{2}{\longrightarrow} \beta$$

and $A = K\Gamma/(\alpha\beta^2, \beta^3)$. Let the basis elements of $\frac{1}{2}^2$ be b, c_1, c_2, c_3 , where $M_1 := Me_1 = \langle b \rangle_K$, $M_2 := Me_2 = \langle c_1, c_2, c_3 \rangle_K$ such that the module is

Let $U \leq M$, $U_1 := Ue_1 \leq M_1$ and $U_2 := Ue_2 \leq M_2$. If $U_1 \neq 0$, then $U_1 = M_1 = \langle b \rangle_K$, so $bA = \langle b, c_2, c_3 \rangle_K \leq U$, thus either U = M or U is 3-dimensional with Loewy diagram $\frac{1}{2}$. Now suppose that $U_1 = 0$, so $U \leq M_2 = c_1 A$. If U contains an element $u = \lambda c_1 + \mu c_2 + \nu c_3$, where $\lambda \neq 0$, then $u\beta = \lambda c_2 + \mu c_3 \in U$ and $u\beta^2 = \lambda c_3$, and these generate the whole $M_2 = \frac{2}{2}$. If $\lambda = 0$ for all $u \in U$, but $\mu \neq 0$ for some, then $u\beta = \mu c_3 \in U$ gives that $U = \langle c_2, c_3 \rangle_K = \frac{2}{2}$. If $\lambda = \mu = 0$ for all $u \in U$ but $U \neq 0$, then $U = \langle c_3 \rangle = 1$. Finally, U may be the zero module. So M has only 6 submodules, with Loewy diagrams:

$${1 \atop 2}{2 \atop 2}, {1 \atop 2}, {2 \atop 2}, {0 \atop 2}, {0 \atop 2},$$

and their factor modules are

- $0, \quad 2, \quad 1, \quad 1 \oplus 2, \quad \frac{1}{2}^2, \quad \frac{1}{2}^2.$
- **8.** What is the dimension of the vector spaces $\operatorname{Hom}(\frac{2}{12}, \frac{12}{2})$, and $\operatorname{Hom}(\frac{12}{2}, \frac{2}{12})$ for modules over the algebra of problem 5.a).

Solution: Let $M = {1 \atop 2}^2$ and $N = {1 \atop 2}^2$. The generator element of M is in Me_2 , so it can only be mapped into the two-dimensional space Ne_2 , and there exist two such independent homomorphisms: if we factor M with the simple submodule 1, then the factor module ${2 \atop 2}$ can be embedded into N, or we can embed $M/\operatorname{rad} M = 2$ into the socle of N. So $\dim_K \operatorname{Hom}({2 \atop 1}^2, {1 \atop 2}^2) = 2$.

There is no monomorphism of N to M (since both modules are 3-dimensional, this would be an isomorphism), and every nonzero submodule of N contains the socle 2, so the homomorphisms from N to M go through $1 \oplus 2 \rightarrow \frac{2}{12}$. But $1 \oplus 2$ can only go into the socle of M. So $\text{Hom}(N, M) \cong \text{End}(1 \oplus 2)$, and the latter is generated by the independent morphisms $\pi_1 \iota_1$ and $\pi_2 \iota_2$. So $\dim_K \text{Hom}(\frac{12}{2}, \frac{2}{12}) = 2$.

- **Hf1.** Determine the Jacobson radical of the ring R of 3×3 upper triangular matrices over \mathbb{Z}_2 , and the radical of the R-module M of all 3×3 matrices over \mathbb{Z}_2 .
- **Hf2.** What is the Loewy diagram of the regular module of $A = K\Gamma/I$ if

$$\Gamma: 1 \underset{\beta}{\overset{\alpha}{\longleftrightarrow}} 2 \underset{\delta}{\overset{\gamma}{\longleftrightarrow}} 3, \quad I = (\alpha \gamma, \beta \alpha - \gamma \delta, \delta \beta)?$$