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1. Theorem: Let 0→ X → Y → Z → 0 be an Auslander–Reiten sequence.

1) There is an irreducible morphism Z ′ → Z if and only if Z ′
⊕

≤Y ;

2) There is an irreducible morphism X → X ′ if and only if X ′
⊕

≤Y .

Prove the ‘only if ’ direction in both statements.

Solution: Let the maps in the ARS be 0→ X
α
−→Y

β
−→Z → 0.

1) Suppose that Z ′ γ
−→Z is an irreducible morphism. Then γ cannot be a split

epimorphism, so there must exist a morphism Z ′ δ
−→Y such that δβ = γ. Since γ is

irreducible, and β is not a split epimorphism, δ must be a split monomorphism, i.e. Z ′ is
isomorphic to a direct summand of Y .

2) Similarly, if X
γ
−→X ′ is an irreducible morphism, then γ cannot be a split monomor-

phism, so there exists a morphism Y
δ
−→X ′ such that αδ = γ. Since γ is irreducible, and

α is not a split monomorphism, δ must be a split epimorphism. This implies that X ′ is
isomorphic to a direct summand of Y .

2. Let AA = P1⊕P2⊕ . . .⊕Pn be a decomposition into indecomposable projective modules.
We define a graph on P = {P1, . . . , Pn } so that Pi and Pj are connected with an edge
if and only if Hom(Pi, Pj) or Hom(Pj, Pi) is nonzero. Let K1, . . . ,Kt be the connected
components of this graph. Prove that every Rj := ⊕{Pi |Pi ∈ Kj } is an idecomposable
ideal of A, so A is connected if and only if the graph on P is connected. In particular, a
graph algebra KΓ/I is connected if and only if Γ is connected.

Solution: If P ∈ Kj és r ∈ R, then rP = 1 · rP = (e1 + . . .+ en)rP = ⊕ eirP , where Pi =
eiR, so eirP ≤ Pi for every i. If eirP 6= 0, then Hom(P, Pi) 6= 0 (the left multiplication by
eir gives such a homomorphism), so Pi ∈ Kj . Thus rP ≤ Rj for every P ∈ Kj and r ∈ R,
hence Ri ⊳ R.

If Rj = S⊕T is a nontrivial direct sum of rings, then by the Krull–Schmidt The-
orem, S and T are direct sums of projective modules from Kj , thus there must be a
homomorphism between some components of S and T , and this can be exended natually
to a morphism between S and T . But S2 = S and TS ≤ T ∩ S = 0 imply that for
ϕ ∈ Hom(S, T ), we have Sϕ = S2ϕ = SϕS ≤ TS = 0, so Hom(S, T ) = 0, and similarly,
Hom(T, S) = 0, contradicting the assumptions.

Now suppose that A is a graph algebra with a graph Γ. If α is an arrow from i
to j in Γ, then the left multiplication by α maps ejA nontrivially to eiA. On the other
hand, if there is a nontrivial homomorphism from ejA to eiA, then it maps ej to a linear
combination of oriented paths from i to j. So the components of the graph of the algebra
correspond to the components of the graph of projective modules defined in this problem.

3. Let A be a graph algebra such that AA =
1
3
1
⊕ 2

1 ⊕
3
1 . Determine the Auslander–Reiten

translate of the simple modules.

Solution: We calculate the AR translate in the following way. The first two steps of the
minimal projective resolution are:

P1
ϕ
−→P0−→M −→ 0.

(P0 is the projective cover of M , i.e. P0→→P0/ radP0
∼= M/ radM , and P0 → M is the

map completing the diagram of projectivity for P0. Then P1 is the projective cover of the
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kernel.) Take the map ϕ∗ between the corresponding left projective modules P ′
0 and P ′

1:
If the components of the images of the generator elements of the components of P1 are
given in the row of a matrix as a vector of paths then the matrix for ϕ∗ is the transpose
of the matrix for ϕ, where we replace each path with its reverse in Γ′ (actually, we apply

the functor Hom(−, AA)): P ′
0

ϕ∗

−→P ′
1, and complete this diagram with the cokernel of ϕ∗.

P ′

0
ϕ∗

−→P ′

1−→Tr(M)−→ 0,

Now τ(M) = D(Tr(M)).

AA =
1
3
1
⊕ 2

1 ⊕
3
1 AA =

1
2 3

1
⊕ 2 ⊕ 3

1

Γ : 2
α
−→ 1

β
−→←−
γ

3 Γ : 2
α′

←− 1
γ′

−→←−
β′

3

3
1

[β]
−→

1
3
1
→ 1 → 0

1
2 3

1

[β′]
−→ 3

1 → 3 → 0 τ( 1 ) = D( 3 ) = 3

1
3
1

[α]
−→ 2

1 → 2 → 0 2
[α′]
−→

1
2 3

1
→

1
3
1
→ 0 τ( 2 ) = D

(

1
3
1

)

=
1
3
1

1
3
1

[γ]
−→ 3

1 → 3 → 0 3
1

[γ′]
−→

1
2 3

1
→ 1

2 → 0 τ( 3 ) = D
(

1
2

)

= 2
1

4. Determine the Auslander–Reiten graph of the following graph algebras.

a) A = KΓ, where Γ : 1
α
−→ 2

β
−→ 3

γ
←− 4.

b) AA = 1
2 ⊕

2
2

Solution: a) We calculate first those orbits of τ that start with an injective module (there
might also be infinite or cyclic orbits). The series of translates stops when we it reaches a
projective module.

AA =
1
2
3
⊕ 2

3 ⊕ 3 ⊕ 4
3 , AA = 1 ⊕ 2

1 ⊕
3

2 4
1
⊕ 4 , D(AA) = 1 ⊕ 1

2 ⊕
1
2 4
3
⊕ 4

Γ : 1
α
−→ 2

β
−→ 3

γ
←− 4 Γ′ : 1

α′

←− 2
β′

←− 3
γ′

−→ 4

2
3

[α]
−→

1
2
3
→ 1 → 0 1

[α′]
−−→ 2

1 → 2 → 0 τ( 1 ) = D( 2 ) = 2

3
[β]
−→ 2

3 → 2 → 0 2
1

[β′]
−−→

3
2 4
1
→ 3

4 → 0 τ( 2 ) = D( 3
4 ) =

4
3

So the orbit of Q(1) is
[

4
3 −−− 2 −−− 1 ] .

3
[αβ]
−→

1
2
3
→ 1

2 → 0 1
[β′α′]
−−→

3
2 4
1
→ 3

2 4 → 0 τ( 1
2 ) = D( 3

2 4 ) =
2 4
3

3
[β γ]
−−→ 2

3 ⊕
4
3 →

2 4
3 → 0 2

1 ⊕ 4

[

β′

γ′

]

−−→
3

2 4
1
→ 3 → 0 τ( 2 4

3 ) = D( 3 ) = 3

The orbit of Q(2) is

[ 3 −−− 2 4
3 −−−

1
2

]

.

3
[αβ γ]
−−→

1
2
3
⊕ 4

3 →
1
2 4
3
→ 0 1 ⊕ 4

[

β′α′

γ′

]

−−→
3

2 4
1
→ 3

2 → 0 τ(
1
2 4
3
) = D( 3

2 ) =
2
3
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The orbit of Q(3) is
[

2
3 −−−

1
2 4
3

]

.

3
[γ]
−→ 4

3 → 4 → 0 4
[γ′]
−−→

3
2 4
1
→

3
2
1
→ 0 τ( 4 ) = D

(

3
2
1

)

=
1
2
3

The orbit of Q(4) is
[

1
2
3
−−− 4 ] .

Knowing the irreducible morphisms going to projective and from injective modules, there
is only one way to put together these orbits in the Auslander–Reiten graph. (Start with

the irreducible morphisms going from 3 to 2
3 and 4

3 , and from 2
3 to

1
2
3
, and use the fact

that there is an arrow from τ(M) to N if and only if there is an arrow from N to M .) It
is easy to check that this subgraph is a whole connected component: all the arrows going
to projectives and injectives are there, and also the whole AR sequences for every module.
Since this component is finite, this must be the whole Auslander–Reiten graph.
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b)

AA = 1
2 ⊕

2
2 , AA = 1 ⊕ 2

1 2 , D(AA) = 1 ⊕ 1 2
2
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α′

β′

2
2

[α]
−→ 1

2 → 1 → 0 1
[α′]
−−→ 2

1 2 →
2
2 → 0 τ( 1 ) = D( 2

2 ) =
2
2

So the orbit of Q(1) is
[

2
2 −−− 1 ] .

2
2

[α β]
−−→ 1

2 ⊕
2
2 →

1 2
2 → 0 1 ⊕ 2

1 2

[

α′

β′

]

−−→ 2
1 2 → 2 → 0 τ( 1 2

2 ) = D( 2 ) = 2

2
2

[β]
−−→ 2

2 → 2 → 0 2
1 2

[β′]
−−→ 2

1 2 →
2
1 → 0 τ( 2 ) = D( 2

1 ) =
1
2
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So the orbit of Q(2) is
[

1
2 −−− 2 −−− 1 2

2

]

.

We know that there are arrows from 2 to 1
2 and 2

2 , and the inverse translate of 2 is 1 2
2 .

These give the whole ARS starting at 2 , since dim 1
2 + dim 2

2 = dim 2 + dim 1 2
2 . If we

continue this with the inverse translates, we get the following graph.
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Here we repeat the module 2 , to show that both the ARS starting at 2 and the ARS
ending at 2 are complete. It can be checked easily that this is a complete component of
the Auslander–Reiten graph: all the irreducible morphisms going to projectives and going
from injectives are there, and also all the arrows given by the AR sequences (one has to
check the dimensions to see that no middle terms are missing). So there are only five
indecomposable modules in mod-A: 1 , 2 , 1

2 , 2
2 and 1 2

2 .

5. Prove that Z(Mn(R)) = Z(R)In, where In denotes the n× n identity matrix.

Solution: Suppose a matrix M is in the center. Then for every i 6= j, mijEii = EiiMEji =
EiiEjiM = 0M = 0, so mij = 0, furthermore miiEij = EiiMEij = EiiMEijEjj =
EiiEijMEjj = EijMEjj = mjjEij , so mii = mjj . This means, that M = mI for some
m ∈ R. But rmIn = (rIn)M = M(rIn) = mrIn, so m ∈ Z(R). Finally, it is obvious that
Z(R)In ≤ Z(Mn(R)), since for any matrix M and r ∈ Z(R), (rIn)M = [rmij ] = [mijr] =
M(rIn).

6. Let S = eR
⊕

≤R be a simple module generated by the idempotent element e. Prove that
EndS ∼= eRe. In particular, if R is a full matrix ring over a division ring D then EndS ∼=
D.

Solution: Here the endomorphisms are supposed to act from the left, otherwise EndS
would be isomorphic to the opposite ring of eRe.
For every element a := ere ∈ eRe, the left multiplication ϕa by a gives a module ho-
momorphism from eR to eR. The map ϕ : eRe → End(S), ϕ : a 7→ ϕa is a ring
homomorphism, since (ϕa + ϕb)s = ϕas + ϕbs = as + bs = (a + b)s = ϕa+bs and
(ϕaϕb)s = ϕa(ϕbs) = ϕa(bs) = a(bs) = (ab)s = ϕabs. The map ϕ is injective because
for a 6= 0, ϕae = ae = eree = ere =6= 0, so ϕa 6= 0. Finally, ϕ is surjective because for any
endomorphism α ∈ EndS and a := αe, we have α(er) = α(eer) = α(e)er = a(er) = ϕa(er)
for every r ∈ R, so α = ϕa.
The full matrix ring has only one simple module up to isomorphism, one copy of this is S =
E11Mn(D). So the endomorphism ring of S is isomorphic to E11Mn(D)E11 = DE11

∼= D.

7. Find the irreducible representations of C3 over an arbitrary field K. Determine the sub-
modules of KC3 when charK = 3.
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Solution: The representations of C3 are the group homomorphisms going to GL(V ). The
representation is determined by the image of the generator element: a matrix A such that
A3 = I. The representation is irreducible if V has no proper invariant subspace. Let m(x)
be the minimal polinomial of A. A3 = I implies that m(x) | x3 − 1. If m(1) = 0, then 1
is an eigenvalue of A, so A has an eigenvector, and the generated subspace is A-invariant,
thus dimV = 1, and A is the identity of GL(V ). This gives the trivial representation of
C3. If charK = 3, then x3 − 1 = (x − 1)3, so in this case there is no other irreducible
representation..

Suppose now that charK 6= 3 and m(1) 6= 0. Then m(x) | x2 + x + 1. If x2 +
x + 1 is reducible over K, then it has two different roots ( x3 − 1 has no multiple roots
when charK 6= 3, since x3 − 1 is prime to its derivative), and there is a one-dimensional
representation for each eigenvalue. In this case C3 has three different (and clearly non-
equivalent) representations.

If x2 + x+1 is irredubible over K, then for every v ∈ V , the subspace generated by v
and vA is A-invariant (since vA2 = −v − vA), and it has no proper A-invariant subspace
because then A would have an eigenvector. már nincs A-invariáns altere, mert akkor A-
nak lenne sajátvektora. So V must be two-dimensional. Such a representation exists:

A =

[

−1 1
−1 0

]

. There cannot be any more non-equivalent irreducible representations

because 1 + 2 = dimCC3.
If charK = 3, then we saw that there is only one simple module up to isomorphism,

let’s call it S. Then every minimal submodule of KC3 must be isomorphic S, so it is
one-dimensional, and for the generator element x + ya + za2 (where C3 = 〈a〉), satisfies
(x + ya + za2)a = z + xa + ya2 = x + ya + za2, hence x = y = z.This means that
M1 = {λ(1 + a + a2) |λ ∈ K } is the only minimal submodule in KC3-ban, thus every
other nontrivial module contains it. On the other hand, for every maximal submodule M2,
the factor modules M2/M1

∼= S, so for every u ∈M2, ua− u ∈M1, and these are exactly
the elements u = x + ya + za2, for which x + y + z = 0. Since these elements form a
2-dimensional submodule the maximal submodule is also unique. Thus KC3 has only four
submodules: 0,M1,M2, KC3.

8. Find the irreducible representations of C2 × C2 over an arbitrary field K.

Solution: The homomorphisms from C2 × C2 to GL(V ) are determined by the images
of the generator elements, i.e. a pair of matrices A and B such that A2 = B2 = I and
AB = BA. The minimal polynomial of A and B divides x2 − 1, so A and B must have
eigenvalues in K. Let V1 be an eigenspace of A. Since AB = BA, this subspace is also
B-invariant: if vA = λv, then (vB)A = v(BA) = v(AB) = (vA)B = λvB. B also has
an eigenvector in this subspace because B2 = I, so A and B has a common eigenvector,
which means that V has a one-dimensional C2×C2-invariant subspace. So every irreducible
representation is linear, i.e. it maps C2 ×C2 to K×. Both generators must be mapped to
1 or −1, and this way we always get a homomorphism, so in case charK = 2 there is only
one, in every other case there are four irreducible representations.

9. Prove that J(KG) =
{
∑

g∈G λgg
∣

∣

∑

g∈G λg = 0
}

if G is a finite p-group and charK = p.
How many nonisomorphic simple modules exist in mod-KG?

Solution: First we show by induction on |G| that G has only one irreducible representation,
the trivial one. Let ϕ : G → GL(V ) be irreducible. Since G is a p-group, Z(G) 6= 1. Let
1 6= g ∈ Z(G). If |G| = pn, then (ϕ(g))p

n

= ϕ(gp
n

) = ϕ(1) = I, so the minimal polynomial
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of ϕ(g) is a divisor of xpn

− 1 = (x− 1)p
n

(the equality holds because charK = p), hence
ϕ(g) has an eigenvector for eigenvalue 1. Let V1 be the eignespace of ϕ(g) for the eigenvalue
1. Since g ∈ Z(G), this subspace is Imϕ-invariant, so the irreducibility of ϕ implies that
V1 = V , and g ∈ Kerϕ. But then ϕ̄ : G/ 〈g〉 → GL(V ) is also an irreducible representation,
and it is trivial by the induction hypothesis, thus ϕ is also trivial.

Let A = KG and M0 = {
∑

g∈G

λgg |
∑

g∈G

λg = 0 }. M0 is clearly a submodule of AA,

and dimK M0 = dimAK − 1, so M0 is maximal. On the other hand, for any maximal
submodule M of AA, the factor module AA/M must be isomorphic to the only irreducible
A-module, which is trivial, so in the factor module 1 ·g = 1, i.e. 1−g ∈M for every g ∈ G.
But these elements generate M0, so M0 ≤M , and then the maximality of M0 implies that
M0 = M . This shows that the only maximal submodule of AA is M0, hence J(A) = M0.

HW1. Consider the graph algebra with Loewy diagram AA =
1

2 3
1
⊕

2
1
2
⊕ 3 . Calculate the AR

translate of the module
1
2
1
.

HW2. Prove that the nonzero morphism 2
1 →

1
2
1

is not an irreducible morphism. (Use the result

of HW1, and show that the first module cannot be a direct summand of the middle term
of the AR sequence, or give a proper decomposition of the morphism, and prove that it is
proper.)


