1. Find the nonlinear irreducible representation of the quaternion group over \mathbb{C}.

Solution: We try to find a subgroup of $G L_{2}(\mathbb{C})$ isomorphic to Q. For this we look for two matrices B and C such that $B^{2}=C^{2}=-I$ and $B^{-1} C B=C^{-1}=-C$. The minimal polinomial of B and C must be $x^{2}+1$. We may choose B to be diagonal: $B=\left[\begin{array}{rr}i & 0 \\ 0 & -i\end{array}\right]$. If $C=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ then $B^{-1} C B=-C$ gives that $\left[\begin{array}{rr}a & -b \\ -c & d\end{array}\right]=\left[\begin{array}{rr}-a & -b \\ -c & -d\end{array}\right]$, i.e. $a=d=0$, and $k_{C}(x)=x^{2}-b c=x^{2}+1$. Let us choose $b=1$ and $c=-1$, i.e. $C=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$. The subgroup $\langle B, C\rangle$ is isomorphic to Q with the isomorphism mapping i to B and j to C.
2. Prove that the product of an irreducible and a linear character is an irreducible character.

Solution: Let λ be linear and χ an arbitrary irreducible character. Then $|\lambda(g)|=1$ for every $g \in G$, so
$[\lambda \chi, \lambda \chi]=\frac{1}{|G|} \sum_{g \in G} \lambda(g) \chi(g) \overline{\lambda(g) \chi(g)}=\frac{1}{|G|} \sum_{g \in G}|\lambda(g)|^{2}|\chi(g)|^{2}=\frac{1}{|G|} \sum_{g \in G}|\chi(g)|^{2}=[\chi, \chi]=1$, hence $\lambda \chi$ is irreducible.
3. The orientation preserving isometries of the cube form a group isomorphic to S_{4}. Is this representation irreducible?
Solution: Let the cube be $[-1,1] \times[-1,1] \times[-1,1]$. The group acts faithfully on the four diagonals of the cube. Let us call the diagonals starting at the corners $(-1,-1,-1),(1,-1,-1),(1,1,-1),(-1,1,-1) a, b, c, d$. Let us calculate the values of the character χ corresponding to the given representation. Then the standard matrix of the rotation about the z axis by $+90^{\circ}$ is

$$
\left[\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { yielding the permutation }(a b c d) \Rightarrow \chi((\ldots .))=1
$$

The standard matrix of the rotation about the y axis by 180° is

$$
\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \quad \text { yielding the permutation }(a b)(c d) \Rightarrow \chi((. .)(. .))=-1 .
$$

The product of these two is

$$
\left[\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right] \quad \text { yielding the permutation }(b d) \Rightarrow \chi((. .))=-1
$$

The matrix of the rotation about a by 120° in the basis consisting of the vectors pointing from the origin to $(-1,1,1),(1,-1,1),(1,1,-1)$ is

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \text { yielding the permutation } \quad(b d c) \Rightarrow \chi((\ldots))=0 .
$$

So the character of the representation is

	1	$(.).(.)$.	$(.)$.	(\ldots).	$(.)$.
χ	3	-1	0	1	-1

$[\chi, \chi]=\frac{1}{24}\left(1 \cdot 3^{2}+3 \cdot(-1)^{2}+8 \cdot 0^{2}+6 \cdot 1^{2}+6 \cdot(-1)^{2}\right)=1$, so the representation is irreducible.
4. Determine the character table of A_{4} and S_{4}.

Solution: The conjugacy classes of A_{4} are $1,(.).(.),.(\ldots)_{1}:=(123)^{A_{4}}$ and $(\ldots)_{2}:=(132)^{A_{4}}$, whose sizes are 1, 3, 4 and 4 (the conjugacy class of 3 -cycles in S_{4} breaks into two in A_{4}, since $C_{A_{4}}((a b c))=C_{S_{4}}((a b c)) \Rightarrow\left|\mathcal{K}_{A_{4}}((a b c))\right|=\left|A_{4}: C_{A_{4}}((a b c))\right|=\frac{1}{2}\left|S_{4}: C_{S_{4}}((a b c))\right|=$ $\left.\frac{1}{2}\left|\mathcal{K}_{S_{4}}((a b c))\right|\right)$.
$A_{4} / A_{4}^{\prime}=A_{4} /\langle(.).(.).\rangle \cong C_{3}$, so A_{4} has 3 linear characters, and these can be expanded from the character table of C_{3}.

C_{3}	1	a	a^{2}
χ_{1}	1	1	1
χ_{2}	1	ε	ε^{2}
χ_{3}	1	ε^{2}	ε

A_{4}	1	$(.).(.)$.	$(\ldots)_{1}$	$(\ldots)_{2}$
χ_{1}	1	1	1	1
χ_{2}	1	1	ε	ε^{2}
χ_{3}	1	1	ε^{2}	ε
χ_{4}	3	-1	0	0

The fourth character of A_{4} must be of degree $3\left(12=1^{2}+1^{2}+1^{2}+3^{2}\right)$, and the other values can be calculated by the vertical orthogonality relation: we make each column orthogonal to the first.

The conjugacy classes of S_{4} are $1,(.).(.),.(\ldots),(\ldots),.(.$.$) with sizes 1,3,8,6,6$. For the normal subgroup $V=\langle(.).(.)$.$\rangle , the factor group S_{4} / V \cong S_{3}$, since $S_{3} \cap V=1$ and $S_{3} V=S_{4}$. So we can obtain three irreducible characters from the character table of S_{3}, and the fourth from problem 3. Then $\chi_{2} \chi_{4}$ is also irreducible by Problem 2, and it is different from the other three, so $\chi_{5}=\chi_{2} \chi_{4}$.

S_{3}	1	(\ldots)	$(.)$.
χ_{1}	1	1	1
χ_{2}	1	1	-1
χ_{3}	2	-1	0

S_{4}	1	$(.).(.)$.	(\ldots)	(\ldots).	$(.)$.
χ_{1}	1	1	1	1	1
χ_{2}	1	1	1	-1	-1
χ_{3}	2	2	-1	0	0
χ_{4}	3	-1	0	1	-1
χ_{5}	3	-1	0	-1	1

5. Which of the following class functions of S_{4} are characters? Write the characters as sums of irreducible characters.

1	$(.).(.)$.	(\ldots)	(\ldots).	$(.)$.
5	2	-6	0	1
5	-1	$\frac{3}{2}$	1	0
8	0	-1	2	-2
4	0	-2	0	2

Solution: The first row cannot be a character because for every character χ and $g \in G$, the inequality $|\chi(g)| \leq \chi(1)$ must hold. The second row cannot be a character either, because $\frac{3}{2}$ is not an algebraic integer (its minimal polinomial over \mathbb{Z} is $2 x-3$, whose main coefficient is not a unit element). Let us call the third and the fourth class function χ and ψ. Calculate the coefficients of the irreducible characters $\chi_{i}(i=1,2,3,4,5)$ for the decomposition of χ and ψ.

$$
\begin{aligned}
& {\left[\chi, \chi_{1}\right]=\frac{1}{24}(1 \cdot 8+3 \cdot 0+8 \cdot(-1)+6 \cdot 2+6 \cdot(-2))=0} \\
& \left.\left[\chi, \chi_{2}\right]=1 \cdot 8+3 \cdot 0+8 \cdot(-1)+6 \cdot(-2)+6 \cdot 2\right)=0 \\
& {\left[\chi, \chi_{3}\right]=\frac{1}{24}(1 \cdot 16+3 \cdot 0+8 \cdot 1+6 \cdot 0+6 \cdot 0=1} \\
& {\left[\chi, \chi_{4}\right]=\frac{1}{24}(1 \cdot 24+3 \cdot 0+8 \cdot 0+6 \cdot 2+6 \cdot 2)=2} \\
& {\left[\chi, \chi_{5}\right]=\frac{1}{24}(1 \cdot 24+3 \cdot 0+8 \cdot 0+6 \cdot(-2)+6 \cdot(-2))=0}
\end{aligned}
$$

So $\chi=\chi_{3}+2 \chi_{4}$ is a character, and it is not irreducible.

$$
\begin{aligned}
& {\left[\psi, \chi_{1}\right]=\frac{1}{24}(1 \cdot 4+3 \cdot 0+8 \cdot(-2)+6 \cdot 0+6 \cdot 2)=0} \\
& {\left[\psi, \chi_{2}\right]=\frac{1}{24}(1 \cdot 4+3 \cdot 0+8 \cdot(-2)+6 \cdot 0+6 \cdot(-2))=-1}
\end{aligned}
$$

This already shows that ψ cannot be a character because in its decomposition into a linear combination of irreducible characters there is a negative coefficient.

Hf1. Let G be a group of order 28. Prove that G has an irreducible representation of degree 2 over \mathbb{C}.

Hf2. Complete the following table if we know that this is the character table of a finite group (the rows and columns are not necessarily in the usual order). What is the order of the
group? Determine the sizes of its conjugacy classes and the orders of all normal subgroups.

1		1	-1		1	
1					-1	1
		1	-1			1
			0	0		-2
2		-2	0		$-i \sqrt{2}$	0
2	0		0			0

