1. Find the nonlinear irreducible representation of the quaternion group over \mathbb{C} .

Solution: We try to find a subgroup of $GL_2(\mathbb{C})$ isomorphic to Q. For this we look for two matrices B and C such that $B^2 = C^2 = -I$ and $B^{-1}CB = C^{-1} = -C$. The minimal polinomial of B and C must be $x^2 + 1$. We may choose B to be diagonal: $B = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$. If $C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then $B^{-1}CB = -C$ gives that $\begin{bmatrix} a & -b \\ -c & d \end{bmatrix} = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}$, i.e. a = d = 0, and $k_C(x) = x^2 - bc = x^2 + 1$. Let us choose b = 1 and c = -1, i.e. $C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. The subgroup $\langle B, C \rangle$ is isomorphic to Q with the isomorphism mapping i to B and j to C.

2. Prove that the product of an irreducible and a linear character is an irreducible character. Solution: Let λ be linear and χ an arbitrary irreducible character. Then $|\lambda(g)| = 1$ for every $g \in G$, so $[\lambda \chi, \lambda \chi] = \frac{1}{|G|} \sum_{i} \lambda(g) \chi(g) \overline{\lambda(g) \chi(g)} = \frac{1}{|G|} \sum_{i} |\lambda(g)|^{2} |\chi(g)|^{2} = \frac{1}{|G|} \sum_{i} |\chi(g)|^{2} = [\chi, \chi] = 1$,

 $[\lambda\chi,\lambda\chi] = \frac{1}{|G|} \sum_{g \in G} \lambda(g) \chi(g) \overline{\lambda(g)} \chi(g) = \frac{1}{|G|} \sum_{g \in G} |\lambda(g)|^2 |\chi(g)|^2 = \frac{1}{|G|} \sum_{g \in G} |\chi(g)|^2 = [\chi,\chi] = 1,$ hence $\lambda\chi$ is irreducible.

3. The orientation preserving isometries of the cube form a group isomorphic to S_4 . Is this representation irreducible?

Solution: Let the cube be $[-1,1] \times [-1,1] \times [-1,1]$. The group acts faithfully on the four diagonals of the cube. Let us call the diagonals starting at the corners (-1,-1,-1), (1,-1,-1), (1,1,-1), (-1,1,-1) a,b,c,d. Let us calculate the values of the character χ corresponding to the given representation. Then the standard matrix of the rotation about the z axis by $+90^{\circ}$ is

$$\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 yielding the permutation $(abcd) \Rightarrow \chi((....)) = 1$.

The standard matrix of the rotation about the y axis by 180° is

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 yielding the permutation $(ab)(cd) \Rightarrow \chi((..)(..)) = -1$.

The product of these two is

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 yielding the permutation $(bd) \Rightarrow \chi((..)) = -1$.

The matrix of the rotation about a by 120° in the basis consisting of the vectors pointing from the origin to (-1,1,1), (1,-1,1), (1,1,-1) is

$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 yielding the permutation $(bdc) \Rightarrow \chi((...)) = 0$.

So the character of the representation is

	1	()()	()	()	()
χ	3	-1	0	1	-1

 $[\chi, \chi] = \frac{1}{24}(1 \cdot 3^2 + 3 \cdot (-1)^2 + 8 \cdot 0^2 + 6 \cdot 1^2 + 6 \cdot (-1)^2) = 1$, so the representation is irreducible.

4. Determine the character table of A_4 and S_4 .

Solution: The conjugacy classes of A_4 are $1, (..)(..), (...)_1 := (123)^{A_4}$ and $(...)_2 := (132)^{A_4}$, whose sizes are 1, 3, 4 and 4 (the conjugacy class of 3-cycles in S_4 breaks into two in A_4 , since $C_{A_4}((abc)) = C_{S_4}((abc)) \Rightarrow |\mathcal{K}_{A_4}((abc))| = |A_4 : C_{A_4}((abc))| = \frac{1}{2}|S_4 : C_{S_4}((abc))| = \frac{1}{2}|\mathcal{K}_{S_4}((abc))|$.

 $A_4/A_4' = A_4/\langle (..)(..)\rangle \cong C_3$, so A_4 has 3 linear characters, and these can be expanded from the character table of C_3 .

C_3	1	a	a^2	
χ_1	1	1	1	
χ_2	1	ε	$arepsilon^2$	
χ3	1	$arepsilon^2$	arepsilon	

A_4	1	()()	$()_1$	$()_2$
χ_1	1	1	1	1
χ_2	1	1	arepsilon	$arepsilon^2$
χ3	1	1	ε^2	ε
χ4	3	-1	0	0

The fourth character of A_4 must be of degree 3 ($12 = 1^2 + 1^2 + 1^2 + 3^2$), and the other values can be calculated by the vertical orthogonality relation: we make each column orthogonal to the first.

The conjugacy classes of S_4 are 1, (...)(...), (...), (...), (...) with sizes 1, 3, 8, 6, 6. For the normal subgroup $V = \langle (..)(..) \rangle$, the factor group $S_4/V \cong S_3$, since $S_3 \cap V = 1$ and $S_3V = S_4$. So we can obtain three irreducible characters from the character table of S_3 , and the fourth from problem 3. Then $\chi_2\chi_4$ is also irreducible by Problem 2, and it is different from the other three, so $\chi_5 = \chi_2\chi_4$.

S_3	1	()	()
χ_1	1	1	1
χ_2	1	1	-1
χ3	2	-1	0

 S_4	1	()()	()	()	()
χ_1	1	1	1	1	1
 χ_2	1	1	1	-1	-1
χ 3	2	2	-1	0	0
χ_4	3	-1	0	1	-1
χ_5	3	-1	0	-1	1

5. Which of the following class functions of S_4 are characters? Write the characters as sums of irreducible characters.

1	()()	()	()	()
5	2	-6	0	1
5	-1	$\frac{3}{2}$	1	0
8	0	-1	2	-2
4	0	-2	0	2

Solution: The first row cannot be a character because for every character χ and $g \in G$, the inequality $|\chi(g)| \leq \chi(1)$ must hold. The second row cannot be a character either, because $\frac{3}{2}$ is not an algebraic integer (its minimal polinomial over \mathbb{Z} is 2x-3, whose main coefficient is not a unit element). Let us call the third and the fourth class function χ and ψ . Calculate the coefficients of the irreducible characters χ_i (i=1,2,3,4,5) for the decomposition of χ and ψ .

$$[\chi, \chi_1] = \frac{1}{24} (1 \cdot 8 + 3 \cdot 0 + 8 \cdot (-1) + 6 \cdot 2 + 6 \cdot (-2)) = 0,$$

$$[\chi, \chi_2] = 1 \cdot 8 + 3 \cdot 0 + 8 \cdot (-1) + 6 \cdot (-2) + 6 \cdot 2) = 0$$

$$[\chi, \chi_3] = \frac{1}{24} (1 \cdot 16 + 3 \cdot 0 + 8 \cdot 1 + 6 \cdot 0 + 6 \cdot 0 = 1,$$

$$[\chi, \chi_4] = \frac{1}{24} (1 \cdot 24 + 3 \cdot 0 + 8 \cdot 0 + 6 \cdot 2 + 6 \cdot 2) = 2,$$

$$[\chi, \chi_5] = \frac{1}{24} (1 \cdot 24 + 3 \cdot 0 + 8 \cdot 0 + 6 \cdot (-2) + 6 \cdot (-2)) = 0,$$

So $\chi = \chi_3 + 2\chi_4$ is a character, and it is not irreducible.

$$[\psi, \chi_1] = \frac{1}{24} (1 \cdot 4 + 3 \cdot 0 + 8 \cdot (-2) + 6 \cdot 0 + 6 \cdot 2) = 0,$$

$$[\psi, \chi_2] = \frac{1}{24} (1 \cdot 4 + 3 \cdot 0 + 8 \cdot (-2) + 6 \cdot 0 + 6 \cdot (-2)) = -1,$$

This already shows that ψ cannot be a character because in its decomposition into a linear combination of irreducible characters there is a negative coefficient.

- **Hf1.** Let G be a group of order 28. Prove that G has an irreducible representation of degree 2 over \mathbb{C} .
- **Hf2.** Complete the following table if we know that this is the character table of a finite group (the rows and columns are not necessarily in the usual order). What is the order of the

 $group?\ Determine\ the\ sizes\ of\ its\ conjugacy\ classes\ and\ the\ orders\ of\ all\ normal\ subgroups.$

1		1	-1		1	
1					-1	1
		1	-1			1
			0	0		-2
2		-2	0		$-i\sqrt{2}$	0
2	0		0			0