Concepts

- $\circ~{\rm short}$ exact sequence, split short exact sequence
- Auslander–Reiten sequence
- Auslander–Reiten translate
- $\circ\,$ group representation as a module or as a group homomorphism
- $\circ~$ equivalence of representations
- \circ irreducible representation
- $\circ~$ linear representation
- $\circ\,$ character, class function,
- $\circ~{\rm degree}~{\rm of}~{\rm a}~{\rm representation/character}$
- $\circ\,$ kernel and center of a character
- $\circ\,$ trivial and regular character
- $\circ\,$ scalar product of class functions
- $\circ~{\rm character}$ table
- \circ permutation character
- $\circ~{\rm induced~class~function/character}$
- \circ algebraic integer

Theorems

- $\circ~$ the existence of the ARS
- $\circ\,$ connection between the ARS and the irreducible morphisms
- Maschke's Theorem
- Schur's Lemma
- $\circ \dim_K D < \infty, D \text{ is a division algebra} \Rightarrow D = K$
- $\circ \mbox{ End } S = K \mbox{ if } S \in \mbox{mod-}A \mbox{ is simple and } K \mbox{ is algebraically closed}$
- $|A| = \sum n_i^2$ if A is semisimple and K is algebraically closed
- \circ number of linear representations over \mathbb{C} .
- $\circ\,$ number of irreducible representations over $\mathbb C$
- basic properties of characters
- $\circ\,$ decomposition of the regular character
- $\circ~$ the central orthogonal idempotents of $\mathbb{C}G$
- $\circ 1^{st}$ and 2^{nd} orthogonality relations
- Irr(G) is an orthonormal a basis of Cl(G)
- $\circ~$ equivalence of representations in terms of their characters
- $\circ\,$ describing characters and irreducible characters by the scalar product
- $\circ~$ calculation of the induced character
- $\circ\,$ a class function induces a class function
- Frobenius reciprocity
- $\circ\,$ a character induces a character
- $\circ\,$ properties of the center of a character
- $\circ~\chi(g)|\mathcal{K}(g)|/\chi(1)$ is an algebraic integer if χ is irreducible
- $\circ~$ degrees of irreducible characters divide |G|
- $\circ~$ Burnside's theorem about the $(\chi(1),|\mathcal{K}|)=1$ case
- $\circ\,$ corollary of Burnside's theorem for simple groups
- $\circ\,$ Burnside's $p^{\alpha}q^{\beta}\text{-theorem}$