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Abstract

Let A be a standard Koszul standardly stratified algebra and X an A-
module. The paper investigates conditions which imply that the module
Ext∗A(X) over the Yoneda extension algebra A∗ is filtered by standard
modules. In particular, we prove that the Yoneda extension algebra of A
is also standardly stratified. This is a generalization of similar results on
quasi-hereditary and on graded standardly stratified algebras.
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In [2] and [4] Ágoston, Dlab and Lukács were looking for conditions which would
imply that the Yoneda extension algebra of a quasi-hereditary algebra is again
quasi-hereditary. They proved in [4] that a quasi-hereditary algebra which is
standard Koszul, that is, its right and left standard modules have top projec-
tive resolutions, satisfies this property. They also showed that this homological
duality respects the stratifying structure, i.e. the functor Ext∗A maps standard
A-modules to standard modules over the extension algebra. Later, the same
authors investigated the analogous question for Koszul standardly stratified al-
gebras under the additional assumption that the initial algebra was graded.
They generalized the standard Koszul property for this class of algebras in [5],
and achieved similar results for this case, using Poincaré and Hilbert matrices.

The present paper examines the more general case of (not necessarily graded)
standardly stratified algebras. Our main goal is to find modules over a standard
Koszul standardly stratified algebra, whose images under the natural functor
Ext∗A are filtered by standard modules. Notably, we extend former results about
quasi-hereditary and graded Koszul standardly stratified algebras by showing
that the homological dual of a standard Koszul standardly stratified (but not
necessarily graded) algebra is standardly stratified. The lack of left-right sym-
metry in standardly stratified algebras, however, makes it necessary to deal
separately with left and right modules.

We show in Section 2 that for certain A-modules, the functors Hom(εiA,−) :

mod-A → mod-εiAεi and the trace filtration (corresponding to the projective
left A∗-modules) of the Ext∗A-images of these modules are closely related, when
∗The research was partially supported by the National Research, Development and Inno-

vation Office – NKFIH, K115288
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A or A◦ is standard Koszul and standardly stratified. After a short prepara-
tory section, the refinement of this filtration is handled separately for the two
cases in Section 4 and 5. In both cases we define sufficiently large classes of
modules (which contain simple and standard or proper standard modules, and
are closed under top extensions), whose elements are mapped by Ext∗A to ∆◦-
or ∆-filtered A∗-modules. In particular, A∗A∗ and A∗A∗ prove to be ∆◦- and ∆-
filtered, respectively. Finally, we present some examples and counterexamples
in Section 6.

1 Preliminaries

Throughout the paper, A is a basic finite dimensional algebra over a field K.
Modules are finitely generated, and usually right modules. The category of
finitely generated left or right A-modules will be denoted by A-mod and mod -A,
respectively.

For the algebra A, we fix a complete ordered set of primitive orthogonal
idempotents e = (e1, . . . , en). In the canonical decomposition AA = e1A⊕ . . .⊕
enA of the regular module, the ith indecomposable projective module eiA will
be denoted by P (i) and its simple top P (i)/ rad P (i) by S(i). Besides, Ŝ stands
for the semisimple top of AA, so Ŝ = ⊕ni=1S(i). The corresponding left modules
are denoted by P ◦(i), S◦(i) and Ŝ◦, respectively.

If 1 ≤ i ≤ n, set εi = ei + . . . + en, and εn+1 = 0. The centralizer algebras
εiAεi of A will be denoted by Ci, where the idempotents and their order are
naturally inherited from A. The ith standard and proper standard A-modules
are ∆(i) = eiA/eiAεi+1A and ∆(i) = eiA/ei(rad A)εiA, respectively. That
is, the ith standard module is the largest factor module of P (i) which has no
composition factor isomorphic to S(j) if j > i, while the ith proper standard
module is the largest factor module of P (i) whose radical has no composition
factor isomorphic to S(j) if j ≥ i. The left standard and proper standard mod-
ules are defined analogously. The ith costandard module is ∇(i) = D(∆◦(i)),
and the ith proper costandard module is ∇(i) = D(∆◦(i)), where D stands for
the usual K-duality functor HomK(−,K) of finitely generated modules.

Let X be a class of modules. We say that a module X is filtered by X if
there is a sequence of submodules X = X0 ⊇ X1 ⊇ . . . such that

⋂
i≥0X

i = 0,
and all the factor modules Xi/Xi+1 are isomorphic to some modules of X . In
this case, we write X ∈ F(X ). Given the ordered set (e1, . . . , en), we can form
the trace filtration of a module X with respect to the projective modules P (i)

X = Xε1A ⊇ Xε2A ⊇ . . . ⊇ XεnA ⊇ 0.

We will refer to this filtration as the trace filtration of X. Following the ter-
minology of [10], we call an algebra A (with a fixed complete ordered set e of
primitive orthogonal idempotents) standardly stratified if the regular module
AA ∈ F(∆) (or equivalently, the left regular module AA ∈ F(∆◦), cf. [8]),
where ∆◦ consists of the proper standard modules, while ∆ consists of the left
standard modules. We shall use later the fact that ExthA(∆(i), S(j)) = 0 for all
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h ≥ 0 and i ≥ j when AA ∈ F(∆) (cf. [7]), and similarly, ExthA(∆(i), S(j)) = 0

for all h ≥ 0 and i > j when AA ∈ F(∆).

A submodule X ≤ Y is a top submodule (X
t
≤ Y ), whenever X ∩ rad Y =

rad X. This is equivalent to the condition that the natural embedding of X
into Y induces an embedding of X/ rad X into Y/ rad Y (such embeddings will
be called top embeddings), or in other words, the induced map HomA(Y, Ŝ)→
HomA(X, Ŝ) is surjective. (See [1] for the origin of this concept.) Let

P•(X) : . . .→ Ph(X)→ . . .→ P1(X)→ P0(X)→ X → 0

be a minimal projective resolution of X with the hth syzygy Ωh. Using the
concept of top submodules, we introduce the classes CiA. The module X belongs
to CiA if Ωh is a top submodule of rad Ph−1 for all h ≤ i. We say that X has a
top projective resolution, or X is Koszul, if X ∈ CA :=

⋂∞
i=1 CiA. The algebra

A is a Koszul algebra if Ŝ (or equivalently if Ŝ◦) has a top projective resolution
(cf. [9]). Observe that the concept of top projective resolution generalizes the
notion of a linear projective resolution for the non-graded setting.

A standardly stratified algebra A is said to be standard Koszul if ∆(i) ∈
CA and ∆◦(i) ∈ CA◦ for all i. Let us recall that in this case εi(rad A)2εi =

εi(rad A)εi(rad A)εi holds for all i (see Corollary 1.2 of [10]). Let us also state
here some earlier results about these algebras, which we shall later use freely.
The next theorem summarizes the statements of Lemma 2.1 and Theorem 2.9
of [10].

Theorem 1.1. If A is a standard Koszul standardly stratified algebra, then A

is Koszul. Furthermore, the centralizer algebras Ci are also standard Koszul
and standardly stratified algebras, moreover, ∆Ci(j)

∼= ∆A(j)εi and ∆◦Ci
(j) ∼=

εi∆
◦
A(j) for all j ≥ i.

The extension algebra (or homological dual) of A is the positively graded
algebra A∗ whose underlying vector space is ⊕h≥0(A∗)h = ⊕h≥0 ExthA(Ŝ, Ŝ),
and the multiplication is given by the Yoneda composition of the extensions. A
graded (left) A∗-module X = ⊕h∈ZXh is an A∗-module for which (A∗)hXk ⊆
Xh+k, and by an A∗-module homomorphism f : X → Y , we mean a graded
A∗-module homomorphism f having any degree d ∈ Z. In this sense, we say
that two graded A∗-modules X and Y are isomorphic if there exists a bijective
A∗-homomorphism f : X → Y (of not necessarily degree 0). The ith graded
shift of the graded A∗-module X is denoted by X[i], which is a graded module
such that X[i]h = Xh−i. For graded modules, we shall also use the notation
X≥i = ⊕h≥iXh.

The functor Ext∗A : mod-A → A∗- grmod is defined as the direct sum of
the functors ExthA(−, Ŝ). Namely, if X ∈ mod -A, then Ext∗A(X) is the graded
left module ⊕h≥0 ExthA(X, Ŝ). For simplicity, we denote Ext∗A(X) by X∗, while
for its homogeneous part of degree h we write (X∗)h. We use the notation
ϕ∗ = Ext∗A(ϕ, Ŝ) : Ext∗A(Y, Ŝ) → Ext∗A(X, Ŝ), where ϕ : X → Y is a mod-
ule homomorphism, and we denote by EhX the canonical isomorphism between
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the spaces HomA(Ωh(X), Ŝ) and ExthA(X, Ŝ). Thus we have the commutative
diagram

HomA(Ωh(Y ), Ŝ)

ExthA(Y, Ŝ)

HomA(Ωh(X), Ŝ)

ExthA(X, Ŝ)

Eh
Y Eh

X

(ϕ̃h−1)∗

ϕ∗

of left (A∗)0-modules, where ϕ• : P•(X) → P•(Y ) is a lifting of ϕ, while ϕ̃h−1

is the restriction of ϕh−1 to the submodule Ωh(X) ⊆ Ph−1(X).
The moduleX has a top projective resolution if and only ifX∗ is generated in

degree 0, that is, (X∗)h = ExthA(X, Ŝ) = (A∗)h ·(X∗)0 for h ≥ 0. In particular, if
A is Koszul (for example, when A is standard Koszul and standardly stratified),
then A∗ is tightly graded, i.e. ExthA(Ŝ, Ŝ) = (Ext1

A(Ŝ, Ŝ))h for h ≥ 1 (cf. [9]).
The notion of S-Koszul modules for semisimple S generalizes the concept

of Koszul modules. We say that X is S-Koszul if X satisfies ExthA(X,S) =

Ext1(Ŝ, S) · Exth−1
A (X, Ŝ) for all h ≥ 0. In this sense, a module has a top

projective resolution if and only if it is S-Koszul for all simple modules S.
Let (e1, . . . , en) be a complete ordered set of primitive orthogonal idempo-

tents of A. The set {fi = idS(i) | 1 ≤ i ≤ n} defines a complete set of primitive
orthogonal idempotents in A∗. We will always consider this set with the opposite
order (fn, . . . , f1). In this way, the ith standard A∗-module ∆A∗(i) is defined
as ∆A∗(i) = fiA

∗/fiA
∗(f1 + . . .+ fi−1)A∗, while the ith proper standard mod-

ule is given by ∆A∗(i) = fiA
∗/fi(A

∗)≥1(f1 + . . . + fi)A
∗. The definitions of

left standard and proper standard modules are analogous. The algebra A∗ is
standardly stratified if A∗A∗ is filtered by right standard A∗-modules. In view of
Theorem 1 of [5], if A∗ is tightly graded, then this is equivalent to the condition
that A∗A∗ is filtered by left proper standard A∗-modules.

2 Stratification of modules over A∗

Generalizing the concept of quasi-hereditary lean algebras (cf. [1]), we call an
algebra A with a fixed ordered set (e1, . . . , en) of primitive idempotents lean
if εiJ2εi = εiJεiJεi for all i. In particular, A is lean if A or A◦ is standard
Koszul, as it was shown in Corollary 1.2 of [10]. We should also note that the
centralizer algebras εiAεi of A are also lean if A is lean. In this section, we
examine modules over the extension algebra of a lean algebra A. For induction
purposes we define the classes

K2 =
{
X ∈ mod-A | Xε2A

t
≤ X,Xε2 ∈ CC2

}
and K = K2 ∩ CA,

as they appeared in [10]. (We shall use the notation KA, when we need to
specify the algebra.) We also introduce a recursive version rK ⊂ K of K as

rK = { X ∈ K |Xεi ∈ KCi
for all i }.
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Although K2 was originally defined for standard Koszul standardly stratified
algebras, several useful features are preserved in this more general setting.

For an arbitrary module X, we write X̃ = Xε2A and X = X/X̃. Let the
operator ω : mod-A → mod-A be defined by ω(X) = Ω(X̃). If h ≥ 1, then
ωh(X) stands for ω(ωh−1(X)), while we denote the submodule ωh(X)ε2A by
ω̃h(X), and set ω0(X) = X.

Lemma 2.1. Suppose that X = Xε2A ∈ mod-A. Let P•(X) denote a minimal
projective resolution of X, and let P•(Xε2) denote a minimal projective resolu-
tion of the C2-module Xε2. If u• : P•(Xε2) → P•(X)ε2 is a lifting of idXε2 ,
then ũ0 = u0|Ω(Xε2): Ω(Xε2)→ Ω(X)ε2 is an isomorphism.

Proof. Consider the following commutative diagram

0 Ω(Xε2) P (Xε2) Xε2 0

0 Ω(X)ε2 P (X)ε2 Xε2 0

ũ0 u0

with exact rows. As X = Xε2A, it follows that P (X) = P (X)ε2A, and so
P (X)ε2 is a also projective cover of Xε2. Thus u0 and ũ0 are isomorphisms.

Lemma 2.2. Suppose that A is a lean algebra, and X ≤ Y are A-modules such
that Xε2 ∈ CC2

and the natural embedding ϕ : X̃ → Y is a top embedding. If
ϕ• : P•(X̃)→ P•(Y ) is a lifting of ϕ, then ϕ̃0 = ϕ0|ω̃(X): ω̃(X)→ Ω(Y ) is also

a top embedding. Consequently, ω̃(X)
t
≤ ω(X).

Proof. By the horseshoe lemma we have the commutative exact diagram

0 0 0

0 0 0

0 ω(X) Ω(Y ) Ω(Z) 0

0 P (X̃) P (Y ) P (Z) 0

0 X̃ Y Z 0

ϕ0

ϕ

where the middle column is also a projective cover because ϕ is a top embedding.
In view of Lemma 2.1, ω̃(X)ε2

∼= Ω(Xε2), so Xε2 ∈ CC2
implies that ω̃(X)ε2

is a top submodule of P (Xε2)(ε2Jε2) = P (X̃)Jε2, thus by Lemma 1.4 (2) of

[10], ω̃(X)
t
≤ P (X̃)J . On the other hand, ϕ0 is a split monomorphism, so

P (X̃)J
t
≤ P (Y )J , giving ϕ0(ω̃(X))

t
≤ P (Y )J . Since

ϕ0(ω̃(X)) ⊆ ϕ0(ω(X)) ⊆ Ω(Y ) ⊆ P (Y )J,

we get ϕ̃0(ω̃(X))
t
≤ Ω(Y ) and ω̃(X)

t
≤ ω(X).
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Corollary 2.3. If A is lean and X ∈ K2, then ω(X) ∈ K2.

Proof. We apply Lemma 2.2 with Y = X, and Lemma 2.1.

Proposition 2.4. If A is lean, then the classes K2,K, and rK are closed under
top extensions. That is, if

0→ X
t→ Y → Z → 0

is an exact sequence with top embedding, and both X and Z are in one of these
classes, then Y is in the same class.

Proof. Since X̃
t
≤ X

t
≤ Y and Z̃

t
≤ Z, by Lemma 1.6 of [10], Ỹ

t
≤ Y . Besides,

X̃
t
≤ Y also gives that Xε2

t
≤ Y ε2, so Y ε2 is a top extension of the Koszul

modules Xε2 and Zε2, thus Y ε2 ∈ CC2 by Lemma 2.4 of [2]. Hence we get
that the class K2 is closed under top extensions; and this also implies the same
condition for K = K2 ∩ CA. To prove the statement for rK, we can use the
previous argument recursively for Xεi and Zεi.

Proposition 2.5. Suppose that ε2J
2ε2 = ε2Jε2Jε2. If X ∈ K2, then for every

h ≥ 0 we have an exact sequence

0→ ω̃h(X)
αh−→ Ωh(X)

βh−→ Yh(X)→ 0 (1)

with αh a top embedding.

Proof. Fix an A-module X ∈ K2, and consider the embeddings eh : ω̃h(X) →
ωh(X). For h ≥ 0 let eh• : P•(ω̃h(X)) → P•(ωh(X)) denote a lifting of eh

(and also its restriction to Ω•+1(ω̃h(X)) ⊆ P•(ω̃h(X))). Using Lemma 2.2 and
Corollary 2.3, an induction on h shows that αh as the composition of morphisms

ω̃h(X)
eh−→ ωh(X) = Ω1(ω̃h−1(X))

eh−1
0−→ Ω1(ωh−1(X)) = Ω2(ω̃h−2(X))

eh−2
1−→

. . .
e1h−2−→ Ωh−1(ω1(X)) = Ωh(ω̃0(X))

e0h−1−→ Ωh(X), (2)

is a top embedding.

Corollary 2.6. Let A be lean and X ∈ K2. Using the earlier notation, the
degree k part ExtkA(αh, Ŝ) : ExtkA(Ωh(X), Ŝ) → ExtkA(ω̃h(X), Ŝ) of Ext∗A(αh)

can be written as

ExtkA(αh, Ŝ) = (αh,k−1)∗ =
(
Ekω̃h(X) ◦ (ehk−1)∗ ◦ . . . ◦ (e0

h+k−1)∗ ◦ (EkΩh(X))
−1
)
,

where αh,• : P•(ω̃h(X)) → P•(Ωh(X)) is a lifting of αh, and eh• is the same as
in the previous proof.

The functor HomA(εiA,−) maps exact sequences of mod-A to exact se-
quences of mod-Ci. For i = 2, let us denote HomA(ε2A,−) by F . For an
A-module X, we define qX to be the direct sum of linear maps

qX =
⊕
h≥0

(qX)h : Ext∗A(X)→ Ext∗C2
(Xε2),
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where (qX)h sends every h-fold extension 0→ Ŝ → Xh−1 → . . .→ X0 → X → 0

to an h-fold extension 0 → Ŝε2 → Xh−1ε2 → . . . → X0ε2 → Xε2 → 0. The
map qX is well-defined because F preserves the equivalence of extensions. Since
the functor F commutes with the Yoneda product of extensions, qŜ provides an
algebra homomorphism from A∗ to C∗2 . Consequently, qX can be considered as
a left graded A∗-module homomorphism having degree 0.

Lemma 2.7. For h ≥ 1, the following diagram is commutative:

ExthA(X, Ŝ) ExthC2
(Xε2, Ŝε2)

HomA(Ωh(X), Ŝ) HomC2
(Ωh(Xε2), Ŝε2)HomC2

(Ωh(X)ε2, Ŝε2)

(qX)h

(ũh−1)
∗

(Eh
X)−1 Eh

Xε2
(qΩh(X))0

where ũh−1 : Ωh(Xε2)→ Ωh(X)ε2 is the restriction of a lifting u• : P•(Xε2)→
P•(X)ε2 of idXε2 . That is,

(qX)h = EhXε2 ◦ (ũh−1)∗ ◦ (qΩh(X))0 ◦ (EhX)−1.

When h = 0, the actions of (qX)0 and F coincide, i.e. (qX)0(ξ) = F (ξ) for all
ξ ∈ HomA(X, Ŝ).

Proof. The statement for h = 0 is an easy consequence of the construction of q.
For h ≥ 1, let ξ ∈ ExthA(X, Ŝ) and ξ′ = (EhX)−1(ξ) ∈ HomA(Ωh(X), Ŝ). In

the diagram

0 Ωh(Xε2) Ph−1(Xε2) · · · Xε2 0

0 Ωh(X)ε2 Ph(X)ε2 · · · Xε2 0

0 Ŝε2 Xh−1ε2 · · · Xε2 0

ũh−1 idXε2

F (ξ′) idXε2

the extensions (qX)h(ξ) = ((qX)h ◦ EhX)(ξ′) and (EhXε2 ◦ (ũh−1)∗ ◦ F )(ξ′) are
both equivalent to the extension represented by the bottom row.

Lemma 2.8. The correspondence qX is natural, that is, if ϕ : X → Y is an
A-module homomorphism, then the following diagram is commutative:

Ext∗A(Y )

Ext∗A(X)

Ext∗C2
(Y ε2)

Ext∗C2
(Xε2)

ϕ∗ F (ϕ)∗

qY

qX

Proof. Let u• : P•(Xε2)→ P•(X)ε2 denote a lifting of idXε2 , and similarly let
v• : P•(Y ε2)→ P•(Y )ε2 denote a lifting of idY ε2 . In the diagram
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P•(Xε2)

P•(X)ε2 P•(Y ε2)

P•(Y )ε2

u• F (ϕ)•

F (ϕ•) v•

the chain maps F (ϕ•) ◦ u• and v• ◦ F (ϕ)• are homotopic, since they are both
liftings of the map F (ϕ) ◦ idXε2 = idY ε2 ◦F (ϕ). Let ξ ∈ ExthA(Y, Ŝ) for which
ξ′ = (EhY )−1(ξ). Then we have

EhY (ξ′)

EhY (ξ′)

(EhY ε2 ◦ (ṽh−1)∗0 ◦ F )(ξ′)

(EhX ◦ (ϕh−1)∗)(ξ′)

(EhXε2 ◦ (F (ϕ)h−1)∗0 ◦ (ṽh−1)∗0 ◦ F )(ξ′)

(EhXε2 ◦ (ũh−1)∗0 ◦ F (ϕh−1)∗0)(F (ξ′)).

qY F (ϕ)∗

ϕ∗ qX

Remark 2.9. We should point out that for any A-module X, the kernel of
qX contains A∗f1X

∗ because any extension ξ ∈ ExtkA(X, Ŝ) ∩ A∗f1X
∗ can be

written as a Yoneda-composite of

0→ Ŝ → . . .→ ⊕S(1)→ 0 and 0→ ⊕S(1)→ . . .→ X → 0,

which has clearly a 0 image with respect to qX .

Lemma 2.10. Suppose that A is lean, X ∈ K2, and P•(X) is a minimal pro-
jective resolution of X. Then there is a lifting

u• : P•(Xε2)→ P•(X)ε2

of idXε2 such that each ũh : Ωh+1(Xε2)→ Ωh+1(x)ε2 is a top embedding, and

ũh(Ωh+1(Xε2)) = F (αh+1)(ω̃h+1(X)ε2) ∼= ω̃h+1(X)ε2. (3)

Proof. We use induction on h. The case h = 0 is proved by Lemma 2.1. Suppose
that h > 0. We define the maps ηh : Ph(Xε2) → P (ω̃h(X))ε2 recursively as
shown in the first two rows of the commutative diagram below.

0 Ωh+1(Xε2) Ph(Xε2) Ωh(Xε2) 0

0 ωh+1(X)ε2 P (ω̃h(X))ε2 ω̃h(X)ε2 0

0 Ωh+1(X)ε2 Ph(X)ε2 Ωh(X)ε2 0

η̃h ηh η̃h−1∼=

F (αh+1) F (αh)
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We show by induction that ηh and η̃h are isomorphisms for each h. If η̃h−1 is an
isomorphism, then ηh is surjective because P (ω̃h(X))ε2 → ω̃h(X)ε2 is a projec-
tive cover. As P (ω̃h(X))ε2 is projective, ηh splits. But ker ηh ⊆ rad Ph(Xε2),
so ηh is also injective. Then, by the snake lemma, η̃h is an isomorphism, too.

Finally, αh+1 : ω̃h+1(X) → Ωh+1(X) is a top embedding with ω̃h+1(X)

generated by ε2A, so F (αh+1) and ũh := F (αh+1)◦ η̃h are also top embeddings.

For the remaining part of this section, let us fix the notation of the previous
lemma. That is, for a fixed arbitrary module X ∈ K2, let u• denote a lifting
P•(Xε2)→ P•(X)ε2 of idXε2 for which ũ• = F (α•+1) ◦ η̃•, and αh – along with
its cokernel βh – is defined by the exact sequence (1).

Proposition 2.11. Let A be lean and X ∈ K2. Then qX : X∗ → (Xε2)∗ is an
epimorphism, whose kernel is ⊕h≥0E

h
X(im (βh)∗0).

Proof. For an arbitrary index h ≥ 0,

(qX)h ◦ EhX = EhXε2 ◦ (η̃h−1)∗0 ◦ F (αh)∗0 ◦ (qΩh(X))0

by the definition of ũ• and Lemma 2.7. Both EhXε2 and EhX are isomorphisms,
so we investigate (η̃h−1)∗0 ◦ F (αh)∗0 ◦ (qΩh(X))0. By Lemma 2.8,

(ηh−1)∗0 ◦
(
F (αh)∗0 ◦ (qΩh(X))0

)
= (ηh−1)∗0 ◦

(
(qω̃h(X))0 ◦ (αh)∗0

)
.

As (ηh−1)∗0 and (qω̃h(X))0 are isomorphisms, ker((qX)h ◦ EhX) = ker(αh)∗0 =

im (βh)∗0. Furthermore, the surjectivity of (αh)∗0 follows from αh being a top
embedding. Hence (qX)h is surjective with kernel EhX(im (βh)∗0).

Proposition 2.12. Suppose that A is lean and X ∈ K2. If Yh(X) is Ŝε2A-
Koszul for all h, then ker qX = A∗f1X

∗.

Proof. In view of Proposition 2.11 and Remark 2.9, it is enough to show that
⊕h≥0E

h
X(im (βh)∗0) ⊆ A∗f1X

∗, or equivalently,(
EhX ◦ (βh)∗0

) (
HomA(Yh(X), Ŝ)

)
⊆ (A∗f1X

∗)h

for all h. We prove this by induction on h. If h = 0, then Y0(X) = X ∈ F(S(1)),
and that implies

E0
X(im (β0)∗0) = im (β0)∗0 = HomA(X,S(1)) ⊆ (A∗f1X

∗)0.

It is clear that (EhX ◦ (βh)∗0)(HomA(Yh(X), S(1))) ⊆ A∗f1X
∗, so we only have

to deal with the image of HomA(Yh(X), Ŝε2A). Since αh is a top embedding,
we get, using the horseshoe lemma, the short exact sequence of the respective
syzygies as the bottom row of the following diagram:

0 ω̃h+1(X) Ωh+1(X) Yh+1(X) 0

0 ωh+1(X) Ωh+1(X) Ω(Yh(X)) 0.

αh+1 βh+1

β̃h,0

θh+1

(4)
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Here the snake lemma yields the exact sequence

0→ ωh+1(X) −→ Yh+1(X)
θh+1−→ Ω(Yh(X))→ 0. (5)

By (4), (βh+1)∗ ◦ (θh+1)∗ = (β̃h,0)∗. Besides, ωh+1(X) ∈ F(S(1)) gives the
isomorphism (θh+1)∗ : HomA(Ω(Yh(X)), Ŝε2A)→ HomA(Yh+1(X), Ŝε2A), so

(βh+1)∗0

(
HomA(Yh+1(X), Ŝε2A)

)
= (βh,0)∗0

(
HomA(Ω(Yh(X)), Ŝε2A)

)
.

Suppose that ϕ is an element of HomA(Ω(Y ), Ŝε2A). Then from the diagram

ξ: 0 Ωh+1(X) Ph(X) Ωh(X) 0

0 Ω(Yh+1) P (Yh+1) Yh+1 0

Ŝε2A

βh,0 βh

ϕ

we get

(Eh+1
X ◦ (βh,0)∗0)(ϕ) ⊆ ϕ ∗ βh,0 ∗ ξ ∗ ExthA(X,Ωh(X)) ⊆

⊆ ϕ ∗ Ext1
A(Yh+1,Ω(Y )) ∗ βh ∗ ExthA(Yh+1,Ωh(X)) ⊆

⊆ Ext1
A(Yh+1, Ŝε2A) ∗ βh ∗ ExthA(X,Ωh(X)),

where ∗ stands for the Yoneda product of extensions of arbitrary modules, to
emphasize that this product is not necessarily a product in A∗. It was assumed
that Yh+1 is Ŝε2A-Koszul, so the latter is included in

(A∗)1 ∗HomA(Yh+1, Ŝ) ∗ βh ∗ ExthA(X,Ωh(X)) ⊆
⊆ (A∗)1 ∗ EhX(im (βh)∗0) ⊆ (A∗f1X

∗)h+1.

3 ∆-filtration of modules over an infinite dimen-
sional graded algebra

Suppose that Λ = ⊕h≥0 Λh is a tightly graded K-algebra, i.e. Λh · Λk = Λh+k

for all h, k ≥ 0. Let Λ- grfmod denote the category of left graded Λ-modules
X = ⊕h∈ZXh such that dimK Xh < ∞ for every h, and there exists a t ∈ Z
for which Xh = 0 whenever h < t. The homomorphisms and isomorphisms
in Λ- grfmod will be graded, but not necessarily of degree 0. We assume that
f1 ∈ Λ0 is an idempotent element, and the proper standard module belonging
to f1 is defined as

∆◦(1) = Λf1/Λf1 (Λ≥1) f1.

Clearly, Ext1
Λ(∆◦(1), S) = 0 for all simple modules with f1S = 0. We call a

chain of submodules X = X0 ⊇ X1 ⊇ . . . a ∆◦(1)-filtration if
⋂∞
i=0X

i = 0 and
Xi/Xi+1 ∼= ∆◦(1) for each i.
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Lemma 3.1. If X ∈ F(∆◦(1)), then X is generated by the projective module
Λf1, i.e. X = Λf1X.

Proof. If X = X0 ⊇ X1 ⊇ . . . is a ∆◦(1)-filtration, then Xi = Λui + Xi+1 for
some elements ui = f1ui. Then for any h, the finiteness of the dimension of
(X)≤h and the condition

⋂
Xi = 0 implies that (Xi)h = 0 for some i, thus

Xh =

i−1∑
j=0

Λuj


h

+ (Xi)h ≤
∞∑
j=0

Λuj ≤ Λf1X.

Proposition 3.2. Let 0→ X → Y → Z → 0 be a short exact sequence, where
Z ∈ F(∆◦(1)), and Y = Λf1Y . If S is a simple module such that f1S = 0, then

Ext1
Λ(Z, S) ∼= HomΛ(X,S) = 0.

As a consequence, X is generated by Λf1.

Proof. First suppose that Z ∼= ∆◦(1). Then Ext1
Λ(Z, S) = 0, and from the exact

sequence
HomΛ(Y, S)→ HomΛ(X,S)→ Ext1

Λ(Z, S), (6)

we get HomΛ(X,S) = 0.
Now let Z = Z0 ⊇ Z1 ⊇ . . . be a ∆◦(1)-filtration and assume that

ξ : 0→ S →W → Z → 0

is a short exact sequence. Let us denote by W i the preimage of Zi in W for
each i. Then

⋂
W i = S.

If Λf1W 6= W , then the condition Z = Λf1Z (by Lemma 3.1) together with
the simplicity of S implies that W = S ⊕ Λf1W , so the extension ξ is trivial.

If Λf1W = W , then we may apply the first step of the proof to the sequences

0→W i+1 →W i →W i/W i+1 → 0

to show by induction that HomΛ(W i, S) = 0 for all i.
On the other hand, the simple module S lies in Wh for some h. But⋂∞

i=0W
i = S yields that

⋂∞
i=0(W i)k = 0 for k 6= h, and S for k = h. So

dimK Wk < ∞ implies that there is an i such that (W i)k = 0 for k < h and S
for k = h, which contradicts HomA(W i, S) = 0. We proved that Ext1

Λ(Z, S) = 0,
thus (6) gives HomΛ(X,S) = 0.

Proposition 3.3. Let 0 → X → Y → Z → 0 be a short exact sequence,
where Y ∈ F(∆◦(1)), and X is generated by Λf1. Then both X and Z are
∆◦(1)-filtered.
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Proof. Let Y = Y 0 ⊇ Y 1 ⊇ . . . be a ∆◦(1)-filtration. To prove that X is
∆◦(1)-filtered, we can show by induction that the terms in the chain of modules
X = X∩Y 0 ⊇ X∩Y 1 ⊇ . . . are generated by Λf1 and the factors are isomorphic
to ∆◦(1). Indeed, if X ∩ Y i is generated by Λf1, then the factor module (X ∩
Y i)/(X ∩ Y i+1) ∼= (Y i+1 + (X ∩ Y i))/Y i+1, which is also generated by Λf1, is
embeddable into Y i/Y i+1 ∼= ∆◦(1), so it is either 0, or is isomorphic to ∆◦(1).
Then Proposition 3.2 implies that X ∩ Y i+1 is generated by Λf1.

Next we show that the image of the chain Y = X + Y 0 ⊇ X + Y 1 ⊇ . . .

gives a ∆◦(1)-filtration of Z. The modules X + Y i are Λf1-generated, since X
and Y i are Λf1-generated by Lemma 3.1. The factor (X + Y i)/(X + Y i+1) ∼=
Y i/(Y i ∩ (X + Y i+1)) is a homomorphic image of Y i/Y i+1 ∼= ∆◦(1), where the
kernel is (Y i ∩ (X + Y i+1))/Y i+1 = ((Y i ∩ X) + Y i+1)/Y i+1, and this is, by
the first part of the proof, generated by Λf1. So the kernel can only be 0 or
Y i/Y i+1, consequently the factor is either isomorphic to ∆◦(1) or 0.

It remains to be shown that
⋂

(X + Y i) = X. Let x be an element of the
intersection, which is in Yh. Since the homogeneous parts of the graded module
Y are finite dimensional, there is an i such that Y i ⊆ (Y )>h, hence x ∈ X + Y i

implies that x ∈ X.

Lemma 3.4. A module X ∈ Λ- grfmod is ∆◦(1)-filtered if and only if the factors
of the sequence

X = Λf1(X)≥t ⊇ Λf1(X)≥t+1 ⊇ . . . ⊇ Λf1(X)≥h ⊇ . . . (7)

have finite ∆◦(1)-filtrations, or equivalently,

Λf1(X)≥h/Λf1(X)≥h+1
∼= ⊕∆◦(1) for every h.

Proof. If the factors have finite ∆◦(1)-filtrations, then the chain of modules in
(7) can be refined to a ∆◦(1)-filtration of X.

On the other hand, if X ∈ F(∆◦(1)), then the factors of the sequence (7) are
∆◦(1)-filtered by Proposition 3.3, while dimK f1

(
Λf1(X)≥h/Λf1(X)≥h+1

)
=

dimK f1Xh <∞ shows that they, in fact, have finite ∆◦(1)-filtrations.
For the second equivalence, let 0→ Ω→ P → Z → 0 be the projective cover

of a factor Z of the sequence (7). Then Z = Λf1Z gives P = ⊕Λf1, where Ω ⊆
(P )≥1 is generated by Λf1 according to Proposition 3.2. So Ω ⊆ Λf1(P )≥1, while
Λf1(Z)≥1 = 0 yields Λf1(P )≥1 ⊆ Ω, thus Z ∼= P/Λf1(P )≥1

∼= ⊕∆◦(1).

Proposition 3.5. If 0 → X → Y → Z → 0 is a short exact sequence with X
and Z both ∆◦(1)-filtered, then Y is also ∆◦(1)-filtered.

Proof. We need to show that the factors of the chain of modules

Y = Λf1(Y )≥t ⊇ Λf1(Y )≥t+1 ⊇ . . . ⊇ Λf1(Y )≥h ⊇ . . . .

have finite ∆◦(1)-filtrations.
For every index h ≥ 0, we can form the short exact sequence

0→ (X)≥h ∩ Λf1(Y )≥h → Λf1(Y )≥h → Λf1(Z)≥h → 0. (8)
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Since Λf1(Z)≥h ∈ F(∆◦(1)) and Λf1(Y )≥h is generated by Λf1, Proposition 3.2
gives that (X)≥h ∩ Λf1(Y )≥h = Λf1((X)≥h ∩ Λf1(Y )≥h) = Λf1(X)≥h. There-
fore, we can rewrite (8) as

0→ Λf1(X)≥h → Λf1(Y )≥h → Λf1(Z)≥h → 0,

so we get the short exact sequences

0→ Λf1(X)≥h/Λf1(X)≥h+1 → Λf1(Y )≥h/Λf1(Y )≥h+1 →
Λf1(Z)≥h/Λf1(Z)≥h+1 → 0,

where the first and third modules have finite ∆◦(1)-filtrations, providing finite
∆◦(1)-filtrations for the middle terms. By Lemma 3.4, this proves that Y is
∆◦(1)-filtered.

4 ∆-filtered algebras

In this section, we shall prove that the Ext∗A-images of the modules of rK are
filtered by left proper standard modules of A∗, when A is a standard Koszul
standardly stratified algebra (s.K.s.s. algebra, for short).

For an easier reference, let us quote two lemmas from [2], which will be used
repeatedly in the sequel.

Lemma 4.1. Let 0 → X → Y → Z → 0 be exact with the map X → Y a
top embedding. If X ∈ C, then the induced sequence of graded left A∗-modules
0 → Ext∗A(Z) → Ext∗A(Y ) → Ext∗A(X) → 0 is also exact with morphisms of
degree 0.

Lemma 4.2. Let 0 → X → Y → Z → 0 be exact with X ⊆ rad Y . If
Y ∈ C, then the induced sequence of graded left A∗-modules 0→ Ext∗A(X)[1]→
Ext∗A(Z)→ Ext∗A(Y )→ 0 is also exact with morphisms of degree 0.

Proposition 4.3. If A is s.K.s.s. and X ∈ K2, then X∗/A∗f1X
∗ ∼= (Xε2)

∗.

Proof. In view of Propositions 2.11 and 2.12, we only need to show that the
modules Yh(X) defined in Proposition 2.5 by the short exact sequences

0→ ω̃h(X)
αh−→ Ωh(X)

βh−→ Yh(X)→ 0 (9)

are in K2, since by Proposition 2.7 of [10] this will imply that Yh(X) is Ŝε2A-
Koszul.

Since X ∈ K2, its hth syzygy Ωh(X) also lies in K2 by Proposition 2.6 of
[10]. In particular, Ωh(X)ε2A is a top submodule of Ωh(X). Hence, we can

apply Lemma 1.6 of [10] to the sequence (9) to get Yh(X)ε2A
t
≤ Yh(X). Note

that Y0(X) = X ∈ F(S(1)) ⊆ K2, so it suffices to prove that Yh(X) ∈ K2

implies Yh+1(X)ε2 ∈ CC2
.

In the short exact sequence (5) of Proposition 2.12:

0→ ωh+1(X)→ Yh+1(X)→ Ω(Yh(X))→ 0,
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ωh+1(X) ∈ F(S(1)), so Yh+1(X)ε2
∼= Ω(Yh(X))ε2. By the inductive hypothesis

Yh(X) ∈ K2, thus Ω(Yh(X)) ∈ K2 by Proposition 2.6 of [10], consequently
Yh+1(X)ε2

∼= Ω(Yh(X))ε2 ∈ CC2 .

Applying Proposition 4.3 recursively, we immediately get the trace filtration
of X∗ for modules X of rK.

Theorem 4.4. If A is s.K.s.s. and X ∈ rK, then X∗/A∗(f1 + . . .+ fi−1)X∗ ∼=
(Xεi)

∗ for all i ≥ 1.

Lemma 4.5. If A is s.K.s.s., then A∗/A∗f1A
∗ ∼= C∗2 as algebras.

Proof. By Theorem 1.1, the module Ŝ belongs to K2, so we can apply Propo-
sition 4.3 to this module to get the isomorphism A∗A

∗/A∗f1A∗A
∗ ∼= A∗C

∗
2 of

(left) A∗-modules, which implies the required isomorphism of algebras.

Lemma 4.6. If A is s.K.s.s. and X ∈ F(S(1)), then X∗ = A∗f1X
∗.

Proof. Clearly, X ∈ K2, so X∗/A∗f1X
∗ ∼= (Xε2)

∗
= 0 by Proposition 4.3.

Theorem 4.7. If A is s.K.s.s., then right standard A-modules are mapped to left
proper standard A∗-modules, and left proper standard A-modules are mapped to
right standard A∗-modules by the functor Ext∗A, that is, Ext∗A(∆◦(i)) ∼= ∆A∗(i)

and Ext∗A(∆◦(i)) ∼= ∆A∗(i).

Proof. We provide here the proof only for right standard modules. The state-
ment about the left proper standard modules can be proved similarly. Applying
Theorem 1.1, we use induction on the number of simple modules.

For a local algebra, the module ∆(1) is projective, and Ext∗A(∆(1)) =

S◦A∗(1) = ∆◦A∗(1). So we may assume that A is not local and the statement
holds for C2. We recall that ExthA(∆(i), S(j)) = 0 for all h ≥ 0, and i ≥ j.
Besides, it is easy to see that ∆(i) ∈ K.

Suppose that i ≥ 2. Then Ext∗C2
(∆(i)ε2) ∼= Ext∗C2

(∆C2(i)), and they
are isomorphic to ∆◦C∗2 (i) by the inductive hypothesis. On the other hand,
A∗f1Ext∗A(∆(i)) = 0 because ExthA(∆(i), S(1)) = 0 for all h ≥ 0, so we get
∆◦C∗2 (i) ∼= ∆◦A∗(i) as A∗-modules, since C∗2 ∼= A∗/A∗f1A

∗ by Lemma 4.5. Fi-
nally, Proposition 4.3 yields Ext∗A(∆(i)) ∼= ∆◦A∗(i).

It is left to be shown that Ext∗A(∆(1)) ∼= ∆◦A∗(1). Since ∆(1) ∈ K, the
module Ext∗A(∆(1)) is a graded module generated in degree 0. It is also clear
that it has a one-dimensional degree 0 part, and since ExthA(∆(1), S(1)) = 0 if
h ≥ 1, we see that Ext∗A(∆(1)) is a homomorphic image of ∆◦A∗(1). Consider
the Ext∗A-image of the short exact sequence 0→ rad ∆(1)→ ∆(1)→ S(1)→ 0,
which is the exact sequence

0→ Ext∗A(rad ∆(1))[1]→ Ext∗A(S(1))→ Ext∗A(∆(1))→ 0

in A∗-grmod by Lemma 4.2. This sequence shows that there is an epimor-
phism P ◦A∗(1) → Ext∗A(∆(1)), whose kernel is isomorphic to Ext∗A(rad ∆(1)).
By Lemma 4.6, Ext∗A(rad ∆(1)) = A∗f1 Ext∗A(rad ∆(1)) because rad ∆(1) is in
F(S(1)). Thus Ext∗A(∆(1)) ∼= ∆◦A∗(1).
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Next, we want to show that rK is mapped into F(∆◦A∗). In particular, this
will imply that A∗ is a standardly stratified algebra with respect to the opposite
order of idempotents. In the proof, we use induction on the number of simple
modules, so for the induction step, we need to show that for X ∈ K, the trace
of the first projective A∗-module in X∗ is filtered by ∆◦A∗(1).

Lemma 4.8. If A is s.K.s.s. and X ∈ F(S(1)), then A∗f1X
∗ is filtered by

∆◦A∗(1).

Proof. First, we observe that if X ∈ F(S(1)), then X has a ∆-cover. That is,
there exists an epimorphism ∆(X) → X such that its kernel is contained in
rad ∆(X), and ∆(X) is isomorphic to a direct sum of copies of ∆(1). Indeed,
if we take the projective cover P (X) → X, then it factors through P (X) →
P (X)/P (X)ε2A ∼= ⊕∆(1).

Let us apply the functor Ext∗A to the short exact sequence

0→ X ′ → ∆(X)→ X → 0.

This yields the exact sequence

0→ (X ′)
∗

[1]→ X∗ → (∆(X))
∗ → 0

by Lemma 4.2. Since X ′ also belongs to F(S(1)), we can continue the procedure
to get

X∗ ⊇ (X ′)
∗ ⊇ (X ′′)

∗ ⊇ . . . ⊇
(
X(i)

)∗ ⊇ . . . ,
where

(
X(i)

)∗ is identified with its image in (X∗)≥i. Thus the intersection of
the chain is 0, and the factors are isomorphic to Ext∗A(∆(X(i))) ∼= ⊕∆◦A∗(1).

Proposition 4.9. Suppose that A is s.K.s.s. and X ∈ K2. Then the short
exact sequence 0→ X̃ → X → X → 0 yields an exact sequence in A∗- grfmod

0→ N [1]→ A∗f1X
∗ → A∗f1Ext∗AX

∗ → A∗f1X̃
∗ → N → 0 (10)

with morphisms of degree 0 and N = A∗f1N .

Proof. We apply HomA(−, Ŝ) to 0→ X̃ → X → X → 0, and get the long exact
sequence

. . .
δh−→ ExthA(X, Ŝ)→ ExthA(X, Ŝ)→ ExthA(X̃, Ŝ)

δh+1−→ Exth+1
A (X, Ŝ)→ . . . .

The sequence X∗ → X∗ → X̃∗ is exact, and we may add to it the respective
kernel and cokernel to get

0→ N [1]→ X∗ → X∗ → X̃∗ → N → 0,

where N is the graded left A∗-module whose degree h part is

Nh = coker
(

ExthA(X, Ŝ)→ ExthA(X̃, Ŝ)
)

=

= ker
(

Exth+1
A (X, Ŝ)→ Exth+1

A (X, Ŝ)
)
.
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We still need to show that A∗f1N = N . Since both X and X̃ are in K2, we can
apply Proposition 2.12 to get X∗/A∗f1X

∗ ∼= (Xε2)
∗ ∼= (X̃ε2)∗ ∼= X̃∗/A∗f1X̃

∗.

Hence we have the following commutative exact diagram:

A∗f1X
∗

A∗f1X̃
∗ N

0

X∗ X̃∗ N 0

0 (Xε2)∗ (X̃ε2)∗ 0

0

qX q
X̃

The snake lemma gives us that A∗f1X̃
∗ → N is an epimorphism, and so N =

A∗f1N . Finally, we can extend the upper row to get

0→ N [1]→ X∗ → A∗f1X
∗ → A∗f1X̃

∗ → N → 0,

where X∗ ∈ F(∆◦(1)) by Lemma 4.8, so Lemma 3.1 gives X∗ = A∗f1X
∗.

Theorem 4.10. If A is s.K.s.s. and X ∈ K2, then A∗f1X
∗ ∈ F(∆◦A∗(1)).

Proof. Consider the following chain of submodules:

A∗f1X
∗ ⊇ A∗f1(X∗)≥1 ⊇ . . . ⊇ A∗f1(X∗)≥h ⊇ . . . .

We claim that the factor modules

A∗f1(X∗)≥h/A
∗f1(X∗)≥h+1

∼= A∗f1Ωh(X)∗/A∗f1(Ωh(X)∗)≥1

are isomorphic to finite direct powers of ∆◦A∗(1). As Proposition 2.6 of [10]
implies that Ωh(X) ∈ K2 for all h ≥ 0, it suffices to deal with the case h = 0.
For this, we show the isomorphism

A∗f1X
∗/A∗f1(X∗)≥1

∼= A∗f1X
∗
/A∗f1(X

∗
)≥1. (11)

Consider the sequence (10) for the module X. Then (N [1])0 = 0, and by Propo-
sition 4.9, N [1] = A∗f1N [1], so we haveN [1] ⊆ A∗f1(X∗)≥1

∼= A∗f1Ω(X)∗. The
space (A∗f1X̃

∗)0 = HomA(X̃, S(1)) is zero, thus the map A∗f1X
∗ → A∗f1X

∗

induces an isomorphism

A∗f1X
∗
/(A∗f1X

∗
)≥1
∼= A∗f1X

∗/(A∗f1X
∗)≥1,

and these modules are isomorphic to a direct power (S◦A∗(1))t. Thus the projec-
tive cover (P ◦A∗)

t → A∗f1X
∗/A∗f1(X∗)≥1 can be factored through (∆◦A∗(1))t,

which is isomorphic to A∗f1X
∗
/A∗f1(X

∗
)≥1 by Lemmas 4.8 and 3.4. So

A∗f1X
∗
/A∗f1(X

∗
)≥1 −→ A∗f1X

∗/A∗f1(X∗)≥1 (12)
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is a graded epimorphism of degree 0.
Since X ∈ F(S(1)) ⊂ K2, its syzygy Ω(X) ∈ K2 according to Proposition

2.6 of [10], so Ω(X)
∗
/A∗f1Ω(X)

∗ ∼=
(
Ω(X)ε2

)∗
by Proposition 4.3.

For the sequence 0 → X̃ → X → X → 0 (with X̃
t
≤ X), the horseshoe

lemma gives the exact sequence 0 → ω(X) → Ω(X) → Ω(X) → 0 of the
syzygies. Apply Hom(ε2A,−) to get 0 → ω(X)ε2 → Ω(X)ε2 → Ω(X)ε2 → 0,
where ω(X)ε2 = ω̃(X)ε2

∼= Ω(Xε2) ∈ CC2 . Since ω̃(X) → Ω(X) is a top
embedding by Lemma 2.2, ω̃(X)ε2 is a top submodule of Ω(X)ε2 according to
Lemma 1.4 of [10]. By Lemma 4.1, the last sequence is mapped by Ext∗C2

to the
exact sequence

0→
(
Ω(X)ε2

)∗ → (Ω(X)ε2)
∗ → (Ω(Xε2))

∗ → 0.

Thus, we found an injective graded morphism of degree 0 from(
Ω(X)ε2

)∗ ∼= Ω(X)
∗
/A∗f1Ω(X)

∗ ∼=
(
A∗f1X

∗
/A∗f1(X

∗
)≥1

)
≥1

to
(Ω(X)ε2)

∗ ∼= Ω(X)
∗
/A∗f1Ω(X)

∗ ∼=
(
A∗f1X

∗/A∗f1(X∗)≥1

)
≥1
.

But the epimorphism in (12) induces an epimorphism from the former to the
latter, so taking into account that all levels of the modules have finite dimension,
these factor modules must be isomorphic as stated in (11). Then Lemmas 4.8
and 3.4 finish the proof.

Theorem 4.11. If A is a standard Koszul standardly stratified algebra and
X ∈ rK, then X∗ ∈ F(∆◦A∗). In particular, if X is a top extension of simple
and standard modules, then X∗ is ∆◦A∗-filtered.

Proof. The first statement follows by induction, using Theorem 4.4 and Propo-
sition 4.10, while the second is a consequence of Proposition 2.4 because simple
and standard modules obviously belong to rK.

Theorem 4.12. If A is a standard Koszul standardly stratified algebra, then
its homological dual A∗ is a standardly stratified algebra.

Proof. Semisimple A-modules belong to rK, thus A∗A∗ = Ŝ∗ ∈ F(∆◦A∗).

5 ∆-filtered algebras

In this section, we focus on the left module category of a standard Koszul
standardly stratified algebra. To keep our notation simple, we investigate the
right modules over an algebra A, whose opposite algebra A◦ is a standard Koszul
standardly stratified algebra, so AA ∈ F(∆).

We would like to prove theorems analogous to those of the previous section.
However, to handle the asymmetry of the left and the right module category of
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A, we have to consider a narrower subclass K+ ⊆ K of modules. It is defined
with additional restrictions as

K+ =
{
X ∈ K | ω̃h(X) ∈ CA, and ωh(X) ∼= ⊕S(1) for all h ≥ 0

}
.

We also introduce the recursive version of K+ as

rK+ =
{
X ∈ K+ |Xεi ∈ K+

Ci
for all i

}
.

We shall prove that the functor Ext∗A maps the subclass rK+ into F(∆◦A∗).
Furthermore, we show that rK+ is closed under top extensions, and also that
simple and proper standard modules belong to this class.

Lemma 5.1. If A◦ is s.K.s.s. and X ∈ K+, then ω(X) and ω̃(X) also belong
to K+.

Proof. According to Corollary 2.3, both modules ω(X) and ω̃(X) are in K2. By
definition, ω̃(X) is also Koszul, and it is a top submodule of ω(X). So we have
the exact sequence

0→ ω̃(X)→ ω(X)→ ω(X)→ 0,

with a top embedding, where ω̃(X) and ω(X) ∼= ⊕S(1) are Koszul, so their top
extension ω(X) is also Koszul by Lemma 2.4 of [2]. The remaining conditions
hold by the recursive definition of ωh.

Proposition 5.2. If A◦ is s.K.s.s., the classes K+ and rK+ are closed under
top extensions.

Proof. Suppose that X,Z ∈ K+, and we have the short exact sequence

0→ X
t→ Y → Z → 0

with a top embedding. First we show that in this case, Ỹ is a top extension of Z̃
by X̃. As X̃

t
≤ Y , the sequence 0→ X/X̃ → Y/X̃ → Z → 0 is a top extension

(cf. Lemma 1.3 of [10]). The first term is a direct sum of copies of S(1), so the
sequence splits, and we get Y/X̃ ∼= X ⊕ Z. This yields Y ∼= X ⊕ Z ∼= ⊕S(1),
and it also implies Ỹ /X̃ ∼= Z̃. That is, the sequence

0→ X̃ → Ỹ → Z̃ → 0 (13)

is exact, where X̃
t
≤ Ỹ , so Ỹ ∈ CA according to Lemma 2.4 of [2]. The applica-

tion of the horseshoe lemma to the sequence (13) gives the short exact sequence
0→ ω(X)→ ω(Y )→ ω(Z)→ 0 of the syzygies. By the Koszul property of X̃,
it is a top extension. Using Lemma 5.1, we can show by induction that ω̃h(Y )

and ωh(Y ) satisfy the prescribed conditions of K+ for every h. Finally, (13)
gives a top extension 0 → Xε2 → Y ε2 → Zε2 → 0 by Lemma 1.4 of [10], so a
recursive argument shows that Y ∈ rK+.

Proposition 5.3. If A◦ is s.K.s.s. and X ∈ K+, then X∗/A∗f1X
∗ ∼= (Xε2)

∗.
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Proof. In view of Propositions 2.11 and 2.12, it is enough to show that the
modules Yh(X) defined in Proposition 2.5 by the short exact sequences

0→ ω̃h(X)
αh−→ Ωh(X)

βh−→ Yh(X)→ 0 (14)

are Koszul for all h. We prove this by induction on h. The module Y0(X) =

ω0(X) = X is semisimple, hence Koszul. Now we assume that Yh(X) ∈ CA.
By assumption, X ∈ K+, so ω̃h(X) is Koszul for all h. If we apply Lemma
4.1 to the sequence (14), we get that Ωh(X)∗ → ω̃h(X)∗ is an epimorphism,
in particular, HomA(Ωh+1(X), Ŝ)→ HomA(ωh+1(X), Ŝ) is surjective. It means
that in the induced sequence of the syzygies

0→ ωh+1(X)→ Ωh+1(X)→ Ω(Yh(X))→ 0

we also get a top embedding. If we factor out the submodule ω̃h+1(X) (which
is a top submodule both in the first and the middle terms), then by Lemma 1.3
of [10], we get that the sequence

0→ ωh+1(X)→ Yh+1(X)→ Ω(Yh(X))→ 0

also has a top embedding. The first term is semisimple, hence Koszul, and
Ω(Yh(X)) ∈ CA follows from the inductive hypothesis. By Lemma 2.4 of [2],
their top extension Yh+1(X) is also in CA.

Applying the proposition recursively, we immediately get the trace filtration
of X∗ for modules X of rK+.

Theorem 5.4. If A◦ is s.K.s.s. and X ∈ rK+, then X∗/A∗(f1+. . .+fi−1)X∗ ∼=
(Xεi)

∗ for all i ≥ 1.

Lemma 5.5. Suppose that A◦ is s.K.s.s., X,Y ∈ mod-A and Y ∈ F(∇), i.e.
Y is filtered by costandard modules. Then the map ExthA(X,Y )→ ExthA(X̃, Y )

induced by the natural embedding X̃ → X is an isomorphism for h ≥ 1.

Proof. We take the short exact sequence 0→ X̃ → X → X → 0, and apply the
functor HomA(−, Y ). In the long exact sequence

. . .→ ExthA(X,Y )→ ExthA(X,Y )→ ExthA(X̃, Y )→ Exth+1
A (X,Y )→ . . . ,

ExthA(X,Y ) = 0 for h ≥ 0 because ExthA(S(1),∇(1)) = ExthA(∆(1),∇(1)) = 0 if
A◦ is standardly stratified (cf. Theorem 3.1 of [3]).

Lemma 5.6. Let h ≥ n, where n is the number of simple A-modules. If
A◦ is s.K.s.s. and X ∈ K2, then HomA(ωh(X), S(1)) = 0. Consequently,
A∗f1ωn(X)∗ = 0.

Proof. As K2 is closed under ω, we only have to deal with the case when h =

n. Let 0 → ωn(X) → P (ω̃n−1(X)) → ω̃n−1(X) → 0 be the first step of a
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projective resolution of ω̃n−1(X). Then HomA(P (ω̃n−1(X)),∇(1)) = 0, and so
Ext1

A(ω̃n−1(X),∇(1)) ∼= HomA(ωn(X),∇(1)). This and Lemma 5.5 yield

HomA(ωn(X),∇(1)) ∼= Ext1
A(ω̃n−1(X),∇(1)) ∼= Ext1

A(ωn−1(X),∇(1)) ∼= . . .

. . . ∼= Extn−1
A (ω(X),∇(1)) ∼= ExtnA(X̃,∇(1)).

Since A◦ is standardly stratified, the injective dimension of ∇(1) is less than n
(cf. Lemma 3.2 of [6]), giving HomA(ωn(X),∇(1)) ∼= ExtnA(X̃,∇(1)) = 0. Thus
HomA(ωn(X), S(1)) = 0.

We obtained that ωh(X) = ω̃h(X) for all h ≥ n, hence ExttA(ωn(X), S(1)) ∼=
HomA(Ωt(ωn(X)), S(1)) = HomA(ωn+t(X), S(1)) = 0 for t ≥ 0, proving the
second statement.

Theorem 5.7. If A◦ is s.K.s.s. and X ∈ rK+, then X∗ ∈ F(∆◦A∗).

Proof. In view of Theorem 5.4, we only have to show that A∗f1X
∗ is projective,

when X ∈ K+. Applying the functor Ext∗A to the short exact sequence 0 →
X̃ → X → X → 0 gives the exact sequence

0→ X∗ → X∗ → X̃∗ → 0.

Since X = ⊕S(1), we have the exact sequence

0→ A∗f1X
∗ → A∗f1X

∗ → A∗f1X̃
∗ → 0,

where A∗f1X
∗ is projective. Furthermore, HomA(X̃, S(1)) = 0, so A∗f1X̃

∗ ∼=
A∗f1Ω(X̃)∗ = A∗f1ω(X)∗. We get that A∗f1X

∗ is projective if A∗f1ω(X)∗

is projective. We have seen in Lemma 5.1 that K+ is closed under ω, while
A∗f1ωn(X)∗ is zero by Proposition 5.6. By induction, A∗f1ωh(X)∗ is also pro-
jective for all 0 ≤ h ≤ n.

In the remaining part of this section, we want to show that ∆(i) ∈ rK+ and
S(i) ∈ rK+ for all i ≥ 1.

Theorem 5.8. If A◦ is s.K.s.s., then the proper standard modules are in rK+.

Proof. The centralizer algebras of A◦ are standard Koszul standardly stratified
algebras, and ∆(i)ε2

∼= ∆C2
(i) for all i (see Theorem 1.1). This means that it

is enough to see that ∆(i) ∈ K+ for all indices i.
If i = 1, then ∆(1) = S(1) ∈ CA, and ωh(S(1)) = 0 for h ≥ 1. If i ≥ 2, then

ExthA(∆(i), S(1)) = 0 for h ≥ 0, so ω̃h(∆(i)) = ωh(∆(i)) = Ωh(∆(i)), which is
Koszul by assumption, and we also have ωh(∆(i)) = 0.

Now, we focus on simple modules. Since ∆(1) ∼= S(1), it suffices to deal
with simple modules S which are not isomorphic to S(1). All simple A-modules
belong to K2, so by Corollary 2.3, ωh(S) ∈ K2 for all h.
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We consider the canonical embeddings eh : ω̃h(S) → ωh(S) and i : S(1) →
∇(1). These morphisms give rise for every h to a commutative diagram:

(ωh+1(S), S(1))0

(ωh+1(S),∇(1))0

(ω̃h(S), S(1))1

(ω̃h(S),∇(1))1

(ωh(S), S(1))1

(ωh(S),∇(1))1

. . .i′∼= ĩ

∼=

∼=

e′

ẽ

∼=

i′

∼=

∼=

(ω1(S), S(1))h

(ω1(S),∇(1))h

(S, S(1))h+1

(S,∇(1))h+1

. . .

e′

ẽ

∼=

ĩi′

∼=

∼=

(15)

where (X,Y )k stands for ExtkA(X,Y ) if k > 0, while (X,Y )0 denotes the space
HomA(X,Y ). For simplicity, we also omit the indices of the maps in the dia-
gram. Proposition 5.9 shows that in diagram (15), the marked morphisms are
indeed epimorphism and isomorphisms, respectively.

Proposition 5.9. It A◦ is s.K.s.s., then the induced maps of the diagram (15)
have the following properties:

1. ẽ : ExtkA(ωj(S),∇(1)) → ExtkA(ω̃j(S),∇(1)) is an isomorphism for all
k ≥ 1 and j ≥ 0.

2. The maps ExtkA(ωj+1(S), X) → Extk+1
A (ω̃j(S), X) are isomorphisms for

all k, j ≥ 0 if X ∈ F(S(1)), in particular, when X = S(1) or ∇(1). Con-
sequently, the map ĩ : Ext1

A(ω̃h(S), S(1))→ Ext1
A(ω̃h(S),∇(1)) is injective

for all h ≥ 0.

3. ĩ : ExtkA(ω̃j(S), S(1)) → ExtkA(ω̃j(S),∇(1)) and i′ : ExtkA(ωj(S), S(1)) →
ExtkA(ωj(S),∇(1)) are epimorphisms for all j ≥ 0 and k ≥ 0.

4. e′ : Ext1
A(ωh(S), S(1))→ Ext1

A(ω̃h(S), S(1)) is surjective for all h ≥ 0.

Proof. 1. The first statement follows immediately from Lemma 5.5.
2. Apply HomA(−, X) to 0→ ωj+1(S)→ P (ω̃j(S))→ ω̃j(S)→ 0, which is

the first step of the minimal projective resolution of ω̃j(S), to get

. . .→ ExtkA(P (ω̃j(S)), X)→ ExtkA(ωj+1(S), X)→
→ Extk+1

A (ω̃j(S), X)→ Extk+1
A (P (ω̃j(S)), X)→ . . . .

Here ExtkA(P (ω̃j(S), X) = 0 if k ≥ 1 because P (ω̃j(S)) is projective, and
HomA(P (ω̃j(S)), X) = 0 since P (ω̃j(S)) = P (ω̃j(S))ε2A. These give the re-
quired isomorphisms, while the left exactness of HomA(ωj+1(S),−) implies the
second part.

21



3. First, we note that, as ẽ is an isomorphism, the surjectivity of i′ implies
the surjectivity of ĩ for every pair (k, j). Thus, we may prove the surjectivity of
the two maps simultaneously. We use induction on j.

The algebra A◦ is standard Koszul, so the left module ∆◦(1) lies in CA◦ .
In view of Proposition 2.7 of [2] (or rather its "K-dual version"), ∆◦(1) ∈ CA◦
implies that the natural maps ExtkA(S, S(1))→ ExtkA(S,∇(1)) are epimorphisms
for all k. This provides the base case (k, 0) of the induction.

Suppose that the statement is proved for the pair (k+1, j−1). The inductive
hypothesis gives the surjectivity of ĩ, and hence the surjectivity of i′ in the
diagram below.

ExtkA(ωj(S), S(1))

ExtkA(ωj(S),∇(1))

Extk+1
A (ω̃j−1(S), S(1))

Extk+1
A (ω̃j−1(S),∇(1))

i′ ĩ

∼=

∼=

4. The fourth statement is a consequence of the first three.

Proposition 5.10. Let A◦ be s.K.s.s., and S a simple A-module not isomorphic
to S(1). The homomorphism αk−1,0 : ωk+h(S) → Ωk(ωh(S)), induced by αk−1

of formula (14) applied to X = ωh(S) is a top embedding for all k.

Proof. Let k ≥ 1 be arbitrary. The map αk−1 : ω̃k+h−1(S) → Ωk−1(ωh(S))

is a top embedding by Proposition 2.5, and this implies that Ω(ω̃k+h−1(S)) =

ωk+h(S) is mapped into Ωk(ωh(S)) injectively.
To see that αk−1,0 is a top embedding, we will show that the induced map

α∗k−1,0 : HomA(Ωk(ωh(S)), Ŝ) → HomA(ωk+h(S), Ŝ) is surjective. By Proposi-
tion 2.5, the restriction of αk−1,0 to ω̃k+h(S) ⊆ ωk+h(S) is a top embedding, or

what is equivalent, HomA(Ωk(ωh(S)), Ŝε2A)
α∗k−1,0−→ HomA(ωk+h(S), Ŝε2A) is an

epimorphism. Thus, we only need to show that HomA(Ωk(ωh(S)), S(1))
α∗k−1,0−→

HomA(ωk+h(S), S(1)) is an epimorphism. Consider the following commutative
diagram.

(ω̃j(S), S(1))`

(Ω`(ω̃j(S)), S(1))0

(ωj(S), S(1))`

(Ω`(ωj(S)), S(1))0

E`
ω̃j(S) E`

ωj(S)

e′

(
ej`−1

)∗
(Ω`+1(ω̃j−1(S)), S(1))0

(ω̃j−1(S), S(1))`+1

· · ·· · ·

∼= e′∼=

E`+1
ω̃j−1(S)

By Corollary 2.6, HomA(Ωk(ωh(S)), S(1))
α∗k−1,0−→ HomA(ωk+h(S), S(1)) is sur-

jective, if the bottom row of the diagram is surjective. This is equivalent to the
surjectivity of the top row, which comes from the top row of diagram (15) by
reversing the isomorphisms. Hence it can be factored as
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ExtkA(ωh(S), S(1))
i′→ ExtkA(ωh(S),∇(1))

ẽ→ ExtkA(ω̃h(S),∇(1))
∼=→

∼=→ Extk−1
A (ωh+1(S),∇(1))

ẽ→ . . .
ẽ→ Ext1

A(ω̃k+h−1(S),∇(1))
ĩ−1

→
ĩ−1

→ Ext1
A(ω̃k+h−1(S), S(1)),

where i′ is an epimorphism, while the other maps are isomorphisms, so the
composition is surjective.

Theorem 5.11. If A◦ is s.K.s.s., then the simple A-modules are in rK+.

Proof. In view of Theorem 1.1, it suffices to show that simple A-modules belong
to K+. We also know that S(1) ∈ rK+ by Theorem 5.8. So we only have to
prove the statement for a simple module S, which is not isomorphic to S(1).

We show first that ω̃h(S) ∈ C1
A for all h. Applying Proposition 5.10 to αh,0 :

Ω(ω̃h(S)) = ωh+1(S) → Ωh+1(S), and using S ∈ CA, we get αh,0(Ω(ω̃h(S)))
t
≤

Ωh+1(S)
t
≤ rad Ph(S). As αh,0(Ω(ω̃h(S))) ⊆ αh,0(rad P (ω̃h(S))) ⊆ rad Ph(S),

it follows that Ω(ω̃h(S)) is a top submodule of rad P (ω̃h(S)).
To prove that ωh(S) = ωh(S)/ω̃h(S) is semisimple, in fact, isomorphic to

⊕S(1), we only need that HomA(ωh(S), S(1))→ HomA(ωh(S),∇(1)) is surjec-
tive, and this was proved in the third part of Proposition 5.9.

Finally, we show that ωh(S) ∈ CA by backwards induction. For h ≥ n,
Lemma 5.6 gives that Ω(ω̃h(S)) = ωh+1(S) = ω̃h+1(S), so every syzygy of
ωh(S) is in C1

A. Thus ω̃h(S) = ωh(S) ∈ CA if h ≥ n. On the other hand, if
ωh(S) ∈ CA, then in the exact sequence 0 → ω̃h(S) → ωh(S) → ωh(S) → 0

(with top embedding) both the first and the third terms are Koszul. Hence by
Lemma 2.4 of [2], ωh ∈ CA. Together with the first part of the proof, this gives
ω̃h−1 ∈ CA.

We point out that Theorem 5.4 and 5.11 imply that A∗A
∗ is filtered by

standard modules. Actually, this gives an alternative proof for Theorem 4.12.
Finally, the combination of the results of Proposition 5.2 and Theorems 5.7,

5.8 and 5.11 provides the following theorem.

Theorem 5.12. If A◦ is a standard Koszul, standardly stratified algebra, and
X is a top extension of standard and simple modules, then X∗ is filtered by
standard A∗-modules.

6 Examples

We conclude our work with a few examples. Some of them point out differences
between the behaviour of quasi-hereditary algebras and standardly stratified
algebras, while others show that some of our results can not be strengthened.
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Example 6.1. In [4], it was shown that the classes K2 and K coincide when A
is standard Koszul and quasi-hereditary. It was also shown that, in this context,
the class K is closed under the operation ω. In our case, both properties fail. In
this example, A is standard Koszul and standardly stratified, X belongs to K2

but it is not Koszul. It is also easy to check that Y ∈ K but ω(Y ) = X /∈ K.

AA =
1

1
⊕

2

1

1

⊕
3

1 2

1

X = P (2)/ socP (2) =
2

1
Y =

1

1

3

Example 6.2. This example shows that on the ∆-filtered side, the simple
modules do not have to be in K+, even ω̃(S) does not have to be Koszul for
each simple module S.

AA =

1

1

1
2

1

⊕ 2

1
⊕

3

1

1
2

1

⊕

4

1

1
3

1

S(4) /∈ K+, ω̃(S(4)) /∈ CA.

Example 6.3. None of the defining conditions of the class K+ can be omitted
in Proposition 5.3. Consider the algebra A, whose regular representation is the
following.

AA =

1

1 2

1

⊕ 2

1
⊕

3

2

1

X =
1

2

3
Y =

1

1

Here, A◦ is standard Koszul and standardly stratified, X ∈ K, and ωk(X) is
semisimple for all k but X̃ /∈ CA. The A∗-module A∗f1X

∗ is not projective:

A∗A
∗ =

1

1 2

12

1 2

...
...

⊕

2

1

1 2

12

1 2

...
...

⊕ 3

2
and X∗ =

1 3

1 2

2

On the other hand, Y is not semisimple but satisfies all the other conditions
prescribed by the definition of K+, and Y ∗ ∼= ∆◦A∗(1) 6= P ◦A∗(1).

Example 6.4. The map q defined in Section 2 does not have to be an epimor-
phism ifX /∈ K2. In our next example, the A-moduleX fails to be in K2 because
Xε2 /∈ CC2

. Here ExthA(X,S(4)) = 0 for all h but Ext1
C2

(Xε2, S(4)ε2) 6= 0.

AA =

1

1 2

3

3 ⊕
2

3

4

⊕ 3

4
⊕ 4 X =

1

3

2
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To see that the other defining condition of K2 is also necessary consider the
(hereditary) algebra A, whose regular representation is

AA =
1

2
⊕ 2.

Here P (1)ε2 ∈ CC2
but P (1)ε2A

t

� P (1), so P (1) /∈ K2. It is easy to check that
Ext∗A(P (1)) = S◦A∗(1) and Ext∗C2

(P (1)ε2) 6= 0.

Example 6.5. Our last example shows that in general ker qX 6= A∗f1X
∗, even

if A satisfies εiJ2εi = εiJεiJεi for all i and X ∈ K (see Proposition 2.12). We
take the algebra A and the A-module X for which

AA =

1

1

2

2

2

2
⊕ 2

2
X =

1

2

2

1

Here A◦ is standard Koszul and standardly stratified. The A-module X is in K
but A∗f1X

∗ 6= ker qX as

A∗A
∗ =

1

1

1

2

...

⊕
2

2

...

X∗ =
1

2
⊕ 2

2
and qX(X∗) = S(2).
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