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Abstract

In this paper, we prove that every standard Koszul (not necessarily

graded) standardly strati�ed algebra is also Koszul. This generalizes a

similar result of [3] on quasi-hereditary algebras.

Keywords: standardly strati�ed algebras, standard Koszul algebras, Koszul algebras

AMSC2010: 16E05, 16S37

Ágoston, Dlab and Lukács [3] gave a su�cient, and in the graded case, also
necessary condition for a quasi-hereditary algebra to have a quasi-hereditary
Yoneda extension algebra. They called these algebras standard Koszul, meaning
that their right and left standard modules are Koszul modules, i.e. the right and
left standard modules have top projective resolutions. As a part of the proof,
they also showed that if a quasi-hereditary algebra is standard Koszul then its
simple modules are also Koszul modules, in other words, the algebra itself is a
Koszul algebra.

In [4], they generalized their earlier result to (graded) standardly strati�ed
algebras. Unlike in the quasi-hereditary case, where the �ltration of the alge-
bra by right standard modules corresponds to the �ltration by left standard
modules, here the left regular module is �ltered by proper standard modules.
Naturally, the concept of standard Koszul algebras also had to be modi�ed:
the right standard and the left proper standard modules should be Koszul (in
the quasi-hereditary case, the standard and proper standard modules coincide).
They proved that a graded standard Koszul standardly strati�ed Koszul algebra
has a standardly strati�ed extension algebra. However, the question whether
the standard Koszul property here also implies that the algebra is Koszul, re-
mained open. We should point out here that for quasi-hereditary algebras, this
implication was useful in several situations (cf. [5], [8], [10] or [11]).

In this paper, we settle the question even in the more general, non-graded
setting, proving the following theorem.

Theorem. If A is a standard Koszul standardly strati�ed algebra, then A is a

Koszul algebra.

∗The research was partially supported by the National Research, Development and Inno-

vation O�ce � NKFIH, K115288
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Preliminaries

Throughout the paper, A is a basic �nite dimensional K-algebra, where K
is an arbitrary �eld. The Jacobson radical of A will be denoted by J , and
we write Ŝ = A/J . All A-modules are meant to be right A-modules unless
otherwise stated. Let us �x a complete ordered set of primitive orthogonal
idempotents e1, . . . , en in A. The ith indecomposable projective component eiA
of the regular module AA = e1A⊕. . .⊕enA is denoted by P (i) and its simple top
P (i)/ rad P (i) by S(i). The corresponding left modules are denoted by P ◦(i)
and S◦(i), respectively. Let εi stand for the idempotent ei + ei+1 + . . . + en,
and set εn+1 = 0. We write Ci for the ith centralizer algebra εiAεi, where the
ordering of the idempotents ei, . . . , en is inherited from A.

Having an algebra A with an ordered set of primitive orthogonal idempo-
tents, one can de�ne the standard and proper standard A-modules as follows.
The ith standard module is ∆(i) = eiA/eiAεi+1A, while the ith proper stan-
dard module is ∆(i) = eiA/eiJεiA. That is, the ith standard module is the
largest factor module of P (i) which has no composition factor S(j) with j > i,
and the ith proper standard module is the largest factor module of P (i) whose
radical has no composition factor S(j) with j ≥ i. The left standard and proper
standard modules ∆◦(i) and ∆

◦
(i) can be de�ned analogously. The algebra A

is said to be standardly strati�ed, if AenA is a projective module and the factor
algebra A/AenA is again standardly strati�ed, or in other words, if the regular
module AA is �ltered by the modules ∆(i). By [7], this is equivalent to the
condition that AA is �ltered by the proper standard modules ∆

◦
(i).

We say that a submodule X of Y is a top submodule, and write X
t
≤Y ,

whenever X ∩ rad Y = rad X, i.e. the natural embedding of X into Y induces
an embedding of X/ rad X into Y/ rad Y . The class CiA ⊆ mod-A consists of
those modules X whose minimal projective resolution

· · ·→Pk → · · ·→P1→P0→X→ 0

is a top resolution up to the ith term, that is, the kth syzygy, Ωk is a top
submodule of rad Pk−1 for all k ≤ i. We call a module X a Koszul module
if X ∈ CA = ∩∞i=1CiA. The algebra A is standard Koszul if ∆(i) ∈ CA and
∆
◦
(i) ∈ CA◦ for all i, while A is a Koszul algebra if every simple module S(i)

is a Koszul module. (Note that the latter condition implies that the left simple
modules are also Koszul, see for example [9]).

We should mention here that the Koszul modules and Koszul algebras de�ned
here are traditionally called quasi-Koszul, but here we use the simpler term,
in accordance with the terminology in [3], since this concept is the natural
extension of the notion of Koszul modules over graded algebras to the non-
graded setting.
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1 Lean algebras

Among quasi-hereditary algebras, lean algebras are those which satisfy the con-
dition eiJ2ej = eiJεmJej for every i, j with m = min{i, j}. It was shown in
[1] that this condition is equivalent to saying that ∆(i) ∈ C1A and ∆(j)◦ ∈ C1A◦

for every i, j. Closely following the proof, we get the next statement about the
analogue of lean algebras in the standardly strati�ed setting.

Lemma 1.1. The algebra A satis�es the condition that ∆(i) ∈ C1A and ∆(j)◦ ∈
C1A◦ for every i, j if and only if eiJ

2ej = eiJεmJej for every i, j with m =

min{i+ 1, j}.

Proof. ∆(i) ∈ C1A ⇐⇒ eiAεi+1A = eiJεi+1A
t
≤ eiJ ⇐⇒ eiJεi+1A ∩ eiJ2 ⊆

eiJεi+1J ⇐⇒ eiJεi+1Aej ∩ eiJ2ej ⊆ eiJεi+1Jej ∀j. For j ≤ i, eiJεi+1Aej =

eiJεi+1Jej , so the last inclusion is always true for j ≤ i. On the other hand,
for j ≥ i+ 1, we have eiJεi+1Aej = eiJej ⊇ eiJ2ej , so

∆(i) ∈ C1A ⇐⇒ eiJ
2ej ⊆ eiJεi+1Jej ∀j.

∆
◦
(j) ∈ C1A◦ ⇐⇒ AεjJej

t
≤ Jej ⇐⇒ AεjJej ∩ J2ej ⊆ JεjJej ⇐⇒

eiAεjJej ∩ eiJ2ej ⊆ eiJεjJej ∀i. For i < j, eiAεjJej = eiJεjJej , so the
last inclusion is always true for i < j. On the other hand, for i ≥ j, we have
eiAεjJej = eiJej ⊇ eiJ2ej , so

∆
◦
(j) ∈ C1A◦ ⇐⇒ eiJ

2ej ⊆ eiJεjJej ∀i.

The combination of the two conditions (and the trivial reverse inclusion) gives
the statement of the lemma.

In particular, standard Koszul algebras satisfy the condition of the previous
lemma. As a consequence, we get a useful feature of standard Koszul algebras
in terms of the idempotents εi.

Corollary 1.2. If ∆(i) ∈ C1A and ∆(j)◦ ∈ C1A◦ for every i, j (in particular, if

A is standard Koszul), then εiJ
2εi = εiJεiJεi for every i.

The next few lemmas will be useful in �nding connection between top em-
beddings over A and those over its centralizer algebras (cf. [1]).

Lemma 1.3. If X ≤ Y ≤ Z, and X
t
≤ Z, then

(1) X
t
≤ Y ;

(2) Y
t
≤ Z ⇔ Y/X

t
≤ Z/X.

Lemma 1.4. Let ε be an idempotent in A, and X ≤ Y be A-modules such that

X = XεA and Y = Y εA. Then

(1) X
t
≤ Y ⇔ Xε

t
≤ Y ε in mod-εAε.

(2) If we also assume that εJ2ε = εJεJε, then X
t
≤ rad Y ⇔ Xε

t
≤ rad Y ε in

mod-εAε.

3



Proof. If X ∩ Y J ⊆ XJ , then Xε ∩ Y εJε = (X ∩ Y J)ε = XJε = rad Xε.
Conversely, if Xε∩ Y Jε = XεJε, then (X ∩ Y J)ε = Xε∩ Y Jε = XεJε ⊆ XJ ,
while (X ∩ Y J)(1− ε) ⊆ XεA(1− ε) ⊆ XJ , so X ∩ Y J ⊆ XJ .

The second statement is contained in Lemma 1.6 of [3].

Lemma 1.5. Let ε ∈ A be an idempotent element. Suppose that X ≤ Y are

two A-modules such that XεA = 0. Then

(Y/X)εA
t
≤ Y/X ⇔ Y εA

t
≤ Y.

Proof. Rewrite the condition Y εA
t
≤ Y as Y εA ∩ Y J ⊆ Y εJ and the condition

(Y/X)εA
t
≤ Y/X as Y εA∩ (Y J+X) ⊆ Y εJ+X. Since Y εA(1−ε) ⊆ Y εJ and

Xε = 0, both of the previous inclusions are equivalent to Y ε∩Y Jε ⊆ Y εJε.

Lemma 1.6. Let 0 → X → Y → Z → 0 be a short exact sequence with

XεA
t
≤ Y . Then Y εA

t
≤ Y if and only if ZεA

t
≤ Z.

Proof. Take the factors of X and Y by XεA to get

0→ X → Y → Z → 0.

By Lemma 1.3, Y εA
t
≤ Y if and only if Y εA

t
≤ Y . Since XεA = 0, the latter is

equivalent to ZεA
t
≤ Z by Lemma 1.5.

We shall need a generalized version of Lemma 1.6.

Lemma 1.7. Let ε be an idempotent in A. Suppose that the following commu-

tative diagram has exact rows and columns.

0 0 0

0 X1 Y1 Z1 0

0 X Y Z 0

α1

α

If X1εA
t
≤ Y and Z1εA

t
≤ Z, then Y1εA

t
≤ Y .

Proof. We may assume that X1εA = 0 because otherwise we can substitute the
modules X1, X, Y1 and Y with their factors by the (top) submodule X1εA. In
the new diagram, the same embeddings will be top embeddings as in the original
by Lemma 1.3. Then

X1 ∩ Y1εA = X1(1− ε) ∩ Y1εA ⊆ Y1εA(1− ε) ⊆ Y1εJ.

The assumption Z1εA ∩ ZJ ⊆ Z1εJ implies that

(Y1εA ∩ Y J)α1 ⊆ (Y1εA)α1 ∩ (Y J)α = Z1εA ∩ ZJ ⊆ Z1εJ = (Y1εJ)α1,
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so Y1εA ∩ Y J ⊆ Y1εJ +X1, thus

Y1εA ∩ Y J ⊆ Y1εA ∩ (X1 + Y1εJ) = (Y1εA ∩X1) + Y1εJ ⊆ Y1εJ,

giving that Y1εA
t
≤ Y .

Remark 1.8. Note that the "reverse" of Lemma 1.7 does not hold in general.
Let X ≤ Y and suppose that X is not a top submodule of Y . Consider the
following commutative diagram

0 0 0

0 0 X X 0

0 X X ⊕ Y Y 0

β α

with exact rows and columns, where β is the diagonal map and the bottom row
splits. Here, β is a top embedding but α is not.

Finally, we would like to recall Lemma 1.7 from [3] about the connection
between Koszul A- and εAε-modules.

Lemma 1.9. Suppose that ε is an idempotent of A such that εJ2ε = εJεJε,

and let X be a module with ExttA(X, top ((1 − ε)A)) = 0 for all t ≥ 0. Then

X ∈ CA if and only if Xε ∈ CεAε.

2 Standard Koszul standardly strati�ed algebras

In this section, we turn our attention to standardly strati�ed algebras. Before we
prove our main theorem, we present some preparatory lemmas. These lemmas
lay the foundation of an inductive method which involves the centralizer algebras
of a standardly strati�ed algebra.

Lemma 2.1. Suppose that A is a standard Koszul standardly strati�ed algebra.

Then its centralizer algebra C2 = ε2Aε2 is again standard Koszul and standardly

strati�ed, its standard and left proper standard modules are ∆(i)ε2 and ε2 ∆
◦
(i)

for i ≥ 2.

Proof. Observe that (ε2Aε2)en(ε2Aε2) = ε2(AenA)ε2 is a projective C2-module,
since AenA is the direct sum of copies of enA, and ε2enAε2 = enC2. So C2 is
standardly strati�ed because ε2Aε2/ε2AenAε2 ∼= ε2(A/AenA)ε2 as algebras. It
is also easy to check that the standard modules ∆C2

(i) and the left proper stan-
dard modules ∆

◦
C2

(i) (i ≥ 2) over C2 are isomorphic to the modules ∆(i)ε2 and
ε2 ∆

◦
(i), respectively. The Koszul property of the modules ∆(i)ε2 and ε2 ∆

◦
(i)

follows from Lemma 1.9, since ExttA(∆(i), S(1)) = 0 = ExttA(∆
◦
(i), S◦(1)) for

any t ≥ 0 and i ≥ 2.
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Let S be a semisimple A-module. As in De�nition 1.8 of [3], a module X
is called S-Koszul, if ExttA(X,S) ⊆ Ext1A(Ŝ, S) · Extt−1A (X, Ŝ) for all t ≥ 1, or
equivalently, the trace of S in the top of the syzygy Ωt(X) is mapped injectively
into the top of rad Pt−1(X) for every t ≥ 1. In other words, X is S-Koszul
if and only if Ωt(X)εSA ∩ Pt−1(X)J2 ⊆ Ωt(X)J for every t ≥ 1, where εS =∑
{ei | Sei 6= 0}.

Lemma 2.2. A module X is Koszul if and only if X is S(1)-Koszul and

Ωt(X)ε2A ∩ Pt−1(X)J2 ⊆ Ωt(X)J for all t ≥ 1, i. e. X is both S(1)- and

⊕i≥2S(i)-Koszul.

Proof. ForX ≤ Y , the conditionX∩Y J ⊆ XJ holds if and only ifXe1A∩Y J ⊆
XJ and Xε2A ∩ Y J ⊆ XJ .

Corollary 2.3. If X is an S(1)-Koszul module and Ωt(X)ε2A
t
≤ rad Pt−1(X)

for all t ≥ 0, then X ∈ CA.

Now let us take the subclass K of A-modules

K =

{
X | X is S(1)-Koszul, Xε2A

t
≤ X, Xε2 ∈ CC2

}
.

As in the case of quasi-hereditary algebras in [3], we plan to show that all mod-
ules in K are Koszul, and the simple modules belong to K. First we investigate
modules without the additional S(1)-Koszul property:

K2 =

{
X |Xε2A

t
≤ X, Xε2 ∈ CC2

}
.

We �x some notation for the upcoming lemmas. For any A-module X, let
P(X) and Ω(X) denote the projective cover and the �rst syzygy of X, respec-
tively, while X̃ will stand for the submodule Xε2A, and X for the respective
factor module X/Xε2A.

For the rest of the section, A is always assumed to be a standard Koszul
standardly strati�ed algebra.

Lemma 2.4. If X is an A-module for which Xε2A = 0, then Ω(X)ε2A is a top

submodule of rad P(X).

Proof. Since Xε2A = 0, the projective cover P(X) is isomorphic to ⊕P (1), and

Ω(X)ε2A = (rad ⊕P (1))ε2A = ⊕P (1)ε2A
t
≤ rad ⊕P (1) as ∆(1) ∈ C1A.

Lemma 2.5. Let X be an arbitrary A-module. If X ∈ K2, then Ω(X̃) ∈ K2.

Moreover, Ω(X̃)ε2A
t
≤ radP (X̃).

Proof. Take the minimal projective resolution 0→ Ω(X̃)→ P(X̃)→ X̃ → 0 of
X̃, and apply the exact functor HomA(ε2A,−) to get the short exact sequence
0 → Ω(X̃)ε2 → P(X̃)ε2 → X̃ε2 → 0 of C2-modules. Since X̃ = X̃ε2A, the
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projective module P(X̃)ε2 is the projective cover of X̃ε2. But X ∈ K2 gives
that X̃ε2 = Xε2 belongs to CC2

, together with its syzygy Ω(X̃)ε2.

Furthermore, we have Ω(X̃)ε2
t
≤ rad P(X̃)ε2, so by Lemma 1.4, Ω(X̃)ε2A

t
≤

rad P(X̃), and also Ω(X̃)ε2A
t
≤ Ω(X̃) by Lemma 1.3.

Proposition 2.6. The class K2 is closed under syzygies, that is if X ∈ K2,

then Ω(X)ε2A
t
≤ Ω(X) and Ω(X)ε2 ∈ CC2 .

Proof. Consider the commutative diagram

0 0 0

0 0 0

0 Ω(X̃) Ω(X) Ω(X) 0

0 P(X̃) P(X) P(X) 0

0 X̃ X X 0

(1)

The condition X̃
t
≤X implies that top X ∼= top X̃ ⊕ top X, so the projective

module P(X) in the middle of the diagram is indeed the projective cover of X.

By Lemma 2.5, Ω(X̃)ε2A
t
≤ rad P(X̃) and Ω(X̃)ε2A

t
≤ Ω(X̃). The former

implies Ω(X̃)ε2A
t
≤ rad P(X) because the middle row splits, so we also have

Ω(X̃)ε2A
t
≤ Ω(X) by Lemma 1.3. We can apply Lemma 1.6 to the �rst row of

the diagram to get Ω(X)ε2A
t
≤ Ω(X), as Ω(X)ε2A

t
≤ Ω(X) holds by Lemma

2.4 and Lemma 1.3. The �rst statement of the lemma is now proved.
Let us apply the functor HomA(ε2A,−) to the �rst row and the third column

of diagram (1).

0

0

0 Ω(X̃)ε2 Ω(X)ε2 Ω(X)ε2 0

P(X)ε2

Xε2

It is clear that both the row and the column are exact. As Xε2 = 0, the
modules Ω(X)ε2 and P(X)ε2 are isomorphic, and the latter can be written in
the form ⊕P (1)ε2. The module ⊕P (1)ε2 is Koszul because ∆(1), and also its
syzygy, P (1)ε2A are Koszul modules satisfying the conditions of Lemma 1.9. So
Ω(X)ε2 is a Koszul C2-module.
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Let us observe also that Ω(X̃)ε2 is Koszul by Lemma 2.5, so the �rst and
the last terms of the exact sequence

0→ Ω(X̃)ε2 → Ω(X)ε2 → Ω(X)ε2 → 0

are Koszul. Besides, we have seen that Ω(X̃)ε2A
t
≤ Ω(X), thus Lemmas 1.3 and

1.4 give that the map Ω(X̃)ε2 → Ω(X)ε2 is a top embedding. So by Lemma 2.4
of [2], the C2-module Ω(X)ε2 is also Koszul.

Proposition 2.7. All modules in K2 are ⊕i≥2S(i)-Koszul.

Proof. In view of the previous proposition and Corollary 2.3, it su�ces to prove

that X ∈ K2 implies Ω(X)ε2A
t
≤ rad P(X), and the rest will follow by induc-

tion. Let X ∈ K2, and take a look at diagram (1) again. Since � as we noted �
its middle row is split exact, we have the commutative diagram

0 0 0

0 Ω(X̃) Ω(X) Ω(X) 0

0 rad P(X̃) rad P(X) rad P(X) 0

with exact rows and columns, where the vertical arrows are the natural induced
homomorphisms.

We saw in the proof of Proposition 2.6 that Ω(X̃)ε2A
t
≤ rad P(X), while

Lemma 2.4 implies Ω(X)ε2A
t
≤ rad P(X). So Ω(X)ε2A

t
≤ rad P(X) by Lemma

1.7.

Corollary 2.8. If X ∈ K, then X is a Koszul module.

Theorem 2.9. Every standard Koszul standardly strati�ed algebra is Koszul.

Proof. We prove the theorem by induction on the number of simple modules.
Since C2 is a standard Koszul standardly strati�ed algebra by Lemma 2.1, C2 is
also Koszul by the induction hypothesis, thus every simple module is in K2. So
by Corollary 2.8, we only need to prove that all simple modules are S(1)-Koszul.

As S◦(1) = ∆
◦
(1) is in CA◦ , for an arbitrary t ≥ 1,

ExttA(S◦(1), Ŝ◦) ⊆ Extt−1A (Ŝ◦, Ŝ◦) · Ext1A(S◦(1), Ŝ◦).

Applying the K-duality functor, we get that

ExttA(Ŝ, S(1)) ⊆ Ext1A(Ŝ, S(1)) · Extt−1A (Ŝ, Ŝ)

for all t ≥ 1, which �nishes the proof.

Remark 2.10. In view of Lemma 2.1, we also obtained that a standard Koszul
standardly strati�ed algebra is also recursively Koszul in the sense of [3].
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