Math. A2, Lessons 4-5. Determinants, inverses, and Cramér's rule

• Definition: Determinant of a square matrix \mathbf{A} (det(\mathbf{A}) = $|\mathbf{A}|$) is a number assigned to the matrix \bf{A} in the following way:

 $\det(A) = |\mathbf{a}_1 \cdots \mathbf{a}_n| = \pm \text{Volume of the parallelepiped stretched by } \mathbf{a}_1, \ldots, \mathbf{a}_n$

- The Determinant of **A** can be found by one of the following methods:
	- $-\det(\mathbf{A}) = \sum_{\sigma} (-1)^{I(\sigma)} a_{1\sigma(1)} a_{2\sigma(2)} \cdots a_{n\sigma(n)}$, where σ is the set of permutations of $\{1, 2, \ldots, n\}$, and $I(\sigma)$ is the number of inversions in the permutation σ .
	- As the product of the entries in the main diagonal of the matrix \bf{A} in row-echelon form (which is an upper triangular matrix) obtained by Gaussian elimination.
	- By Co-factor expansion: if M_{ij} is the determinant of the $(n -$ 1) \times (n – 1) matrix obtained from **A** after removing its row i and column j, and $C_{ij} = (-1)^{i+j} M_{ij}$, then we have this **theorem:**
		- * det(\mathbf{A}) = $\sum_{j=1}^{n} a_{ij} C_{ij}$, $i = 1, ..., n$ (expand along row i)
		- * det($\mathbf{A}) = \sum_{i=1}^{n} a_{ij} C_{ij}, j = 1, \ldots, n$ (expand along column j) * $\sum_{j=1}^{n} a_{ij} C_{kj} = 0$ if $i \neq k$ (Skew expansion)
- The determinant of an upper triangular, lower triangular and diagonal matrix is the product of its diagonal entries.
- det $(\mathbf{A}^T) = \det(\mathbf{A}).$
- If two columns (rows) in **A** are interchanged, then its determinant will be multiplied by (-1) .
- If a column (row) of an $n \times n$ matrix **A** is multiplied by $c \in \mathbb{R}$, then its determinant will be multiplied by c, consequently, $\det(cA) = c^n \det(A)$.
- If a constant multiple of a row (column) of **A** is added to another one, then $det(\mathbf{A})$ will not be changed.
- det(AB) = det(A) · det(B) = det(BA).
- If **A** is invertible, then $\det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})} \neq 0$.

• **Definition**: The adjoint matrix of **A** is

$$
adj(\mathbf{A}) = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ \vdots & \vdots & & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{bmatrix}^T = \begin{bmatrix} C_{11} & \cdots & C_{n1} \\ C_{12} & \cdots & C_{n2} \\ \vdots & & \vdots \\ C_{1n} & \cdots & C_{nn} \end{bmatrix}
$$

• Theorem: If A is invertible, then $A^{-1} = \frac{1}{det}$ $\frac{1}{\det(\mathbf{A})}$ adj (\mathbf{A}) . Proof: Use the direct and the skew cofactor expansion formulas

$$
\sum_{j=1}^{n} a_{ij} C_{ij} = \det(\mathbf{A}), \quad \forall i = 1, \dots, n
$$

and

$$
\sum_{j=1}^{n} a_{ij} C_{kj} = 0, \quad \forall i \neq k.
$$

• Vandermonde determinant:

$$
\left| \begin{array}{cccc} 1 & x_1 & \cdots & x_1^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{array} \right| = \prod_{1 \le i < j \le n} (x_j - x_i)
$$

- Properties of the matrix inversion: If A and B are $n \times n$ invertible matrices, then
	- $-$ AB is also invertible and $(AB)^{-1} = B^{-1}A^{-1}$

 $\in \mathbb{R}$

$$
- (\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}
$$

$$
- (c\mathbf{A})^{-1} = \frac{1}{c}\mathbf{A}^{-1}, c
$$

- $(A^{-1})^{-1} = A.$
- Cramér's rule: If $A x = b$, and A is invertible, then $x_i = \frac{\det(A_i)}{\det(A_i)}$ $\frac{\det(\mathbf{A}_i)}{\det(\mathbf{A})},$ $i = 1, \dots, n$, where A_i is the matrix obtained from A by replacing its ith column by the vector b.