
Math. A2, Lesson 9.
Linear transformations, eigenvalues–eigenvectors

Let V,W be vector spaces. A map T : V →W is called linear transformation
if T (u + v) = Tu + Tv and T (cu) = cTu for any u,v ∈ V and c ∈ R.
Consequently, T0 = 0 and the linear transformation of a straight line is a
straight line, etc.

From now on, we will confine ourselves to finite dimensional real inner prod-
uct spaces. Linear operations between these spaces can be described by ma-
trices of real entries. To stress that the elements of the Euclidean space are
finite dimensional vectors, we will use bold-face lower-case letters, further vec-
tors are treated as column-vectors. The inner product of the vectors x,y ∈ Rn

is therefore written with matrix multiplication, like xTy, where T stands for the
transposition, hence xT is a row-vector. Matrices will be denoted by bold-face
upper-case letters. An m× n matrix A = (aij) of real entries aij ’s corresponds
to an Rn → Rm linear transformation. Its transpose, AT , is an n×m matrix.
An n × n matrix is called quadratic and it maps Rn into itself. The identity
matrix is denoted by I or In if we want to refer to its size.

Note that for an m× n matrix A, its range is

R(A) = lin{a1, . . . ,an}

where a1, . . . ,an are the column vectors of A for which fact the notation A =
(a1, . . . ,an) will be used. The rank of A is the dimension of its range: and it is
also equal to the maximum number of linearly independent rows of A; trivially,
rank(A) ≤ min{m,n}.

The kernel (null space) of A is

Ker(A) = {x : Ax = 0}.

Both R(A) and Ker(A) are subspaces in Rm and Rn respectively, and their
dimension sum to n.

The quadratic matrix A is symmetric if A = AT and orthogonal if AAT = I.
A 2 × 2 orthogonal matrix corresponds to a plane rotation by angle α, and its
matrix is (

cosα − sinα
sinα cosα

)
.

The n×n matrix A has an inverse if and only if its determinant, |A| 6= 0, and
its inverse is denoted by A−1. In this case, the linear transformation correspond-
ing to A−1 undoes the effect of the Rn → Rn transformation corresponding to
A, i.e. A−1y = x if and only if Ax = y for any y ∈ Rn. It is important that
in case of an invertible (regular) matrix A, the range (or image space) of A
– denoted by R(A) – is the whole Rn, and in exchange, the kernel of A (the
subspace of vectors that are mapped into the zero vector by A) consists of the
only 0.

An orthogonal matrix A is always regular and A−1 = AT ; further its rows
(or columns) constitute a complete orthonormal set in Rn. Let k (1 ≤ k < n)
be an integer; an n× k matrix A is called suborthogonal if its columns form (a
not complete) orthonormal set in Rn. For such an A, the relation ATA = Ik
holds, but AAT 6= In. In fact, the n × n matrix P = AAT is symmetric and
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idempotent (P2 = P), hence, it corresponds to the orthogonal projection onto
R(A). The trace of the n× n matrix A is

tr(A) =

n∑
i=1

aii.

How the above matrix–matrix and matrix–scalar functions will look like if
the underlying matrix is a product? If A and B can be multiplied together (A
is m×n and B is n× k type), then their product corresponds to the succession
of linear operations B and A in this order, therefore

(AB)T = BTAT

and if A and B are regular n× n matrices, then so is AB, and

(AB)−1 = B−1A−1.

Further, (A−1)T = (AT )−1, and vice versa. If A and B are n × n matrices,
then

|AB| = |A| · |B|.

Therefore, the determinant of the product of several matrices of the same size
does not depend on the succession of the matrices, however, the matrix multi-
plication is usually not commutative. The trace is commutative in the following
sense: if A is an n× k and B is a k × n matrix, then

tr(AB) = tr(BA).

For several factors, the trace is accordingly, cyclically commutative:

tr(A1A2 . . .An) = tr(A2 . . .AnA1) = · · · = tr(AnA1 . . .An−1)

when, of course, the sizes of the factors are such that the successive multiplica-
tions in A1 . . .An can be performed and the number of rows in A1 is equal to
the number of columns in An. Further,

rank(AB) ≤ min{rank(A), rank(B)},

consequently, the rank cannot be increased in course of matrix multiplications.
Given an n×n symmetric real matrix A, the quadratic form in the variables

x1, . . . , xn is the homogeneous quadratic function of these variables:

n∑
i=1

n∑
j=1

aijxixj = xTAx,

where x = (x1, . . . , xn)T , hence the matrix multiplication results in a scalar. The
possible signs of a quadratic form (with different x’s) characterize the underlying
matrix. Accordingly, they fall into exactly one of the following categories.

Definition: Let A be n× n symmetric real matrix.

• A is positive (negative) definite if xTAx > 0 (xTAx < 0), ∀x 6= 0.

• A is positive (negative) semidefinite if xTAx ≥ 0 (xTAx ≤ 0), ∀x ∈ Rn,
and xTAx = 0 for at least one x 6= 0.
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• A is indefinite if xTAx takes on both positive and negative values (with
different, non-zero x’s).

The positive and negative definite matrices are all regular, whereas the pos-
itive and negative semidefinite ones are singular. The indefinite matrices can
be either regular or singular. To more easily characterize the definiteness of
symmetric matrices, we will use their eigenvalues.

The notion of an eigenvalue and eigenvector is introduced: λ is an eigenvalue
of the n×n real matrix A with corresponding eigenvector u 6= 0 if Au = λu. If
u is an eigenvector of A, it is easy to see that for c 6= 0, cu is also an eigenvector
with the same eigenvalue. Therefore, it is better to speak about eigen-directions
instead of eigenvectors; or else, we will consider specially normalized, e.g. unit-
norm eigenvectors, when only the orientation is bivalent. It is well known that
an n × n matrix A has exactly n eigenvalues (with multiplicities) which are
(possibly complex) roots of the characteristic polynomial |A − λI|. Knowing
the eigenvalues, the corresponding eigenvectors are obtained by solving the sys-
tem of linear equations (A − λI)u = 0 which must have a non-trivial solution
due to the choice of λ. In fact, there are infinitely many solutions (in case of
single eigenvalues they are constant multiples of each other). An eigenvector
corresponding to a complex eigenvalue must also have complex coordinates, but
in case of our main interest (the symmetric matrices) this cannot occur.

If the n × n matrix A has all distinct eigenvalues, then the corresponding
eigenvectors are linearly independent, and choosing them as a new basis, our
matrix becomes diagonal. Let U contain these eigenvectors in its columns (U
is a regular matrix and it is the transformation matrix from the standard basis
to the new basis formed by the eigenvectors). Then the matrix

U−1AU

becomes diagonal. When there are multiple eigenvalues, the matrix is diagonal-
izable only if to any multiple eigenvalue as many linearly independent eigenvec-
tors correspond as the multiplicity of this eigenvalue. These are the so-called
normal matrices. The quadratic real matrix A is called normal if AAT = ATA.
Among real matrices, only the symmetric, anti-symmetric (AT = −A), and or-
thogonal matrices are normal. Normal matrices have the following important
spectral property: to their eigenvalues there corresponds an orthonormal set of
eigenvectors; choosing this as a new basis, the matrix becomes diagonal (all the
off-diagonal entries are zeros).

Hilbert–Schmidt theorem: The n × n symmetric, real matrix A has
real eigenvalues λ1 ≥ · · · ≥ λn (with multiplicities), and the corresponding
eigenvectors u1, . . . ,un can be chosen such that they constitute a complete
orthonormal set in Rn.

This so-called Spectral Decomposition theorem implies the following SD of
the n× n symmetric matrix A:

A =

n∑
i=1

λiuiu
T
i = UΛUT , (1)

where Λ = diag(λ1, . . . , λn) is the diagonal matrix containing the eigenvalues –
called spectrum – in its main diagonal, while U = (u1, . . . ,un) is the orthogonal
matrix containing the corresponding eigenvectors of A in its columns in the
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order of the eigenvalues. Of course, permuting the eigenvalues in the main
diagonal of Λ, and the columns of U accordingly, will lead to the same SD,
however – if not otherwise stated – we will enumerate the real eigenvalues in
non-increasing order. About the uniqueness of the above SD we can state the
following: the unit-norm eigenvector corresponding to a single eigenvalue is
unique (up to orientation), whereas to an eigenvalue with multiplicity m there
corresponds a unique m-dimensional so-called eigen-subspace within which any
orthonormal set can be chosen for the corresponding eigenvectors.

It is easy to verify that for the eigenvalues of the symmetric matrix A

n∑
i=1

λi = tr(A) and

n∏
i=1

λi = |A|

hold. Therefore A is singular if and only if it has a 0 eigenvalue, and

r = rank(A) = rank(Λ) = |{i : λi 6= 0}|;

moreover, R(A) = lin{ui : λi 6= 0}. Therefore, the SD of A simplifies to

r∑
i=1

λiuiu
T
i .

Its spectrum also determines the definiteness of A in the following manner.
Proposition: Let A be n× n symmetric real matrix.

• A is positive (negative) definite if and only if all of its eigenvalues are
positive (negative).

• A is positive (negative) semidefinite if and only if all of its eigenvalues are
nonnegative (nonpositive), and its spectrum includes the zero.

• A is indefinite if its spectrum contains at least one positive and one neg-
ative eigenvalue.

The matrix of an orthogonal projection PF onto the r-dimensional subspace
F ⊂ Rn has the following SD (only the r < n case is of importance, since in the
r = n case PF = In):

PF =

r∑
i=1

uiu
T
i = AAT ,

where u1, . . . ,ur is any orthonormal set in F which is the eigen-subspace cor-
responding to the eigenvalue 1 of multiplicity r. Note that the eigenspace cor-
responding to the other eigenvalue 0 of multiplicity n − r is the orthogonal
complementary subspace F⊥ of F in Rn, but it has no importance, as only the
eigenvectors in the first r columns of U enter into the above SD of PF . With
the notation A = (u1, . . . ,ur), the SD of PF simplifies to AAT , indicating that
A is a suborthogonal matrix. The matrix of reflection through the subspace F
is 2PF − I.
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