POBABILITY A4, Lessons 10-11: Statistics, ML Estimation, and Confidence Intervals

Marianna Bolla, Prof, DSc. Institute of Mathematics, BME

November 19, 2024

Descriptive statistics

 $(\mathcal{S}, \mathcal{A}, \mathcal{P})$ is a *statistical space* if $(\mathcal{S}, \mathcal{A}, \mathbb{P})$ is probability space for all $\mathbb{P} \in \mathcal{P}$, where \mathcal{P} is a family of distributions.

Parametric case: $\mathcal{P} = \{\mathbb{P}_{\theta} | \theta \in \Theta\}$, where $\Theta \subset \mathbb{R}^k$ is the parameter space. Statistical sample: X_1, X_2, \ldots, X_n i.i.d.

Sample space (\mathcal{X}) : set of all possible realizations $\mathbf{x} = (x_1, \ldots, x_n)$ of $\mathbf{X} = (X_1, \ldots, X_n)$.

Statistic: $T = T(\mathbf{X}) = T(X_1, \dots, X_n)$ measurable function of the sample elements.

Basic descriptive statistics:

- Sample mean: $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. (Sometimes $\bar{X}_n, \bar{x}, \bar{x}_n$.)
- Steiner's Theorem: $\frac{1}{n}\sum_{i=1}^{n}(x_i-c)^2 = \frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2 + (\bar{x}-c)^2.$
- Empirical variance: $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \bar{X}^2 = \overline{X^2} \bar{X}^2.$
- Corrected empirical variance: $S^{*2} = \frac{n}{n-1}S^2 = \frac{1}{n-1}\sum_{i=1}^{n}(X_i \bar{X})^2.$
- Standard Error of Mean: $\bar{X}\sqrt{n}/S^*$.
- k-th empirical moment: $M_k = \frac{1}{n} \sum_{i=1}^n X_i^k$. Centered version: $M_k^c = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^k$. $(S^2 = M_2^c = M_2 M_1^2$.)
- Skewness: $M_3^c/(M_2^c)^{3/2}$. Kurtosis: $M_4^c/(M_2^c)^2 3$.
- Empirical covariance based on $(X_1, Y_1)^T, \ldots, (X_n, Y_n)^T$ i.i.d.:

$$C = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y}) = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i - \bar{X} \bar{Y}.$$

• Empirical correlation coefficient: $R = \frac{C}{S_X S_Y} = \frac{\sum_{i=1}^n X_i Y_i - n\bar{X}\bar{Y}}{\sqrt{\left(\sum_{i=1}^n X_i^2 - n\bar{X}^2\right)\left(\sum_{i=1}^n Y_i^2 - n\bar{Y}^2\right)}}.$

Estimation

We take an i.i.d. sample X_1, \ldots, X_n from a population with distribution \mathbb{P}_{θ} , where θ is unknown parameter, and it is in the *parameter space* Θ , so $\theta \in \Theta$. For example, if $\mathbf{X} := (X_1, \ldots, X_n)$ follow Poisson distribution, then the parameter, now denoted by λ is in the parameter space $\Theta = (0, \infty)$. The sample space is the set of all possible *n*-tuples (x_1, \ldots, x_n) that are possible *realizations* of the sample. For fixed simple size *n*, let $\mathcal{X} \subset \mathbb{R}^n$ denote the sample space, that is the set of all possible realizations. In the Poisson case, it is $\mathcal{X} = \{0, 1, 2, \ldots\}^n$.

Point estimation means that we want to conclude for θ based on a sample. For this, we need a convenient statistic.

Definition 1 The likelihood function for $\mathbf{x} = (x_1, \ldots, x_n) \in \mathcal{X}$ and $\theta \in \Theta$ is $L_{\theta}(\mathbf{x}) = \mathbb{P}_{\theta}(\mathbf{X} = \mathbf{x}) = \prod_{i=1}^{n} \mathbb{P}_{\theta}(X_i = x_i) = \prod_{i=1}^{n} p_{\theta}(x_i)$ in the discrete, and $L_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} f_{\theta}(x_i)$ in the absolutely continuous case, where $p_{\theta}(x)$ is the probability mass function (p.m.f.) in the discrete, and $f_{\theta}(x)$ is the probability density function (p.d.f.) in the continuous case.

Now we organize the sample entries into a *statistic* $T := T(X_1, \ldots, X_n) = T(\mathbf{X}).$

We want to estimate θ , or its measurable function $\psi(\theta)$ by means of the statistic $T(\mathbf{X})$ on the basis of the i.i.d. sample $\mathbf{X} = (X_1, \ldots, X_n)$. The point estimator is sometimes denoted by $\hat{\theta}$ or $\hat{\psi}$. Some criteria for the 'goodness' of a point estimator:

- $T(\mathbf{X})$ is an **unbiased** estimator of $\psi(\theta)$, if $\mathbb{E}_{\theta}(T(\mathbf{X})) = \psi(\theta)$, $\forall \theta \in \Theta$.
- $T(\mathbf{X}_n)$ is an asymptotically unbiased estimator of $\psi(\theta)$, if

$$\lim_{n \to \infty} \mathbb{E}_{\theta}(T(\mathbf{X}_n)) = \psi(\theta), \quad \forall \theta \in \Theta.$$

Examples of 'good' estimators:

- the sample mean \overline{X} is always an unbiased estimator of the population mean $\mathbb{E}(X_1)$;
- the empirical variance is asymptotically unbiased, whereas, the corrected empirical variance is unbiased estimator of the population variance $\sigma^2 = Var(X_1)$; (this is a **BONUS** exercise).

Methods of point estimation:

• Maximum Likelihood Estimation (MLE): given the sample, the MLE of θ is $\hat{\theta}$ if it maximizes the likelihood function. By common sense, in case of a discrete distribution, the MLE is a possible parameter value, for which having the actual sample is the most likely. However, $\hat{\theta} = T(\mathbf{X})$ is a statistic, and it is asymptotically unbiased and strongly consistent estimator of θ .

Examples

1. Let X_1, \ldots, X_n be i.i.d. sample from Poisson distribution with parameter λ .

$$L_{\lambda}(\mathbf{x}) = \prod_{i=1}^{n} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} = \left(\lambda^{\sum_{i=1}^{n} x_i} e^{-n\lambda}\right) \cdot \left(\prod_{i=1}^{n} \frac{1}{x_i!}\right) = g_{\lambda}(\sum_{i=1}^{n} x_i) \cdot h(\mathbf{x}),$$

so $\sum_{i=1}^{n} X_i$ is sufficient statistic for λ , akin to its one-to-one function \overline{X} . To find the MLE,

$$\ln L_{\lambda}(\mathbf{x}) = \ln \left[\prod_{i=1}^{n} \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \right] = \ln \lambda \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \ln x_i! - \lambda n.$$

Differentiating with respect to λ , the likelihood equation is

$$\frac{\partial \ln L_{\lambda}(\mathbf{x})}{\partial \lambda} = \frac{1}{\lambda} \sum_{i=1}^{n} x_i - n = 0.$$

The solution is $\hat{\lambda} = \bar{x}$, which indeed gives a local and global maximum. So $T(\mathbf{X}) = \bar{X}$ is the MLE of λ , provided it is not 0, i.e., not all the sample entries are zero at the same time (it can happen with positive, albeit 'small' probability).

2. Let X_1, \ldots, X_n be i.i.d. sample from exponential distribution with parameter λ). Then

$$L_{\lambda}(\mathbf{x}) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda \sum_{i=1}^{n} x_i},$$

that is $g_{\lambda}(T(\mathbf{x}))$, and $h(\mathbf{x}) = 1 \cdot I_{(0,\infty)}$. Therefore, $\sum_{i=1}^{n} X_i$ is sufficient akin to \overline{X} or $\frac{1}{\overline{X}}$.

As for the MLE of λ ,

$$\ln L_{\lambda}(\mathbf{x}) = \ln \left[\prod_{i=1}^{n} \lambda e^{-\lambda x_i} \right] = n \ln \lambda - \lambda \sum_{i=1}^{n} x_i,$$

from which, after differentiating, we get that $\hat{\lambda} = 1/\bar{x}$, that gives a local and global maximum. Consequently, $T(\mathbf{X}) = 1/\bar{X}$ is the MLE of λ with probability 1 (\bar{X} can be 0 only with probability 0).

3. Let X_1, \ldots, X_n be i.i.d. sample from normal (Gaussian) distribution with unknown parameter $\theta = (\mu, \sigma^2)$. Then

$$L_{\theta}(\mathbf{x}) = \frac{1}{(\sqrt{2\pi}\sigma)^{n}} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right) = \\ = \frac{1}{(\sqrt{2\pi}\sigma)^{n}} \exp\left(-\frac{1}{2\sigma^{2}} \left[\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + n(\bar{x} - \mu)^{2}\right]\right).$$

It is $g_{\theta}(T(\mathbf{x}))$, where $T(\mathbf{X}) = (\bar{X}, S^2)$ sufficient for θ , and $h(\mathbf{x}) = 1$. Obviously, (\bar{X}, S^{*2}) or $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ are also sufficient. To find MLE,

$$\ln L_{\theta}(\mathbf{x}) = \ln \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = \sum_{i=1}^{n} \left[-\ln(\sqrt{2\pi\sigma^2}) - \frac{(x_i - \mu)^2}{2\sigma^2} \right] = -\frac{n}{2} (\ln(2\pi) + \ln\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2.$$

Taking partial derivatives,

$$\frac{\partial \ln L_{\theta}(\mathbf{x})}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^n 2(x_i - \mu)(-1) = 0 \Longrightarrow \hat{\mu} = \bar{x}.$$

and

$$\frac{\partial \ln L_{\theta}(\mathbf{x})}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

Since the solution $\hat{\mu} = \bar{x}$ does not depend on the actual value of σ^2 substituting it to the second equation, we get that $\hat{\sigma}^2 = S_n^2$, that is only asymptotically unbiased for σ^2 . The Hessian at (\bar{x}, s_n^2) is:

$$H = \begin{pmatrix} -\frac{n}{s_n^2} & 0\\ & & \\ 0 & -\frac{n}{2(s_n^2)^2} \end{pmatrix},$$

which is negative definite, so we indeed have a local and global maximum here.

4. Let X_1, \ldots, X_n be i.i. sample from continuous uniform distribution on [a, b]. Here $\theta = (a, b)$.

$$L_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} f_{\theta}(x_i) = \frac{1}{(b-a)^n}, \text{ if } x_1, \dots, x_n \in [a, b],$$

and 0, otherwise. $L_{\theta}(\mathbf{x}) = (b-a)^{-n}I(x_1^* \ge a, x_n^* \le b) = g_{\theta}(x_1^*, x_n^*)$ and $h(\mathbf{x}) = 1$. So the pair (X_1^*, X_n^*) is sufficient for (a, b). It also gives the MLE, as we maximize the likelihood on the constraint that [a, b] should contain all the sample entries.

Here the moment estimate of the parameters is not the same as the MLE, in contrast to the first three examples.

Interval estimation: The random interval $(T_1(\mathbf{X}), T_2(\mathbf{X}))$ is a confidence interval of level at least $1 - \varepsilon$ for $\psi(\theta)$, if $\mathbb{P}_{\theta}(T_1 < \psi(\theta) < T_2) \ge 1 - \varepsilon$ ($\forall \theta \in \Theta$).

Note that in case of a continuous distribution, exactly $1 - \varepsilon$ level confidence interval can be attained. ε is usually 'small', e.g., 0.05 or 0.01, in which cases we speak about 95% or 99% confidence intervals.

Definition: Let $\xi_1, \ldots, \xi_n \sim \mathcal{N}(0, 1)$ be i.i.d. rv's. Then the distribution of the rv $\xi = \sum_{i=1}^{n} \xi_i^2$ is called χ^2 (chi2) distribution with degrees of freedom (d.f.) *n*. **Definition:** Let $\eta \sim \mathcal{N}(0, 1)$ and $\xi \sim \chi^2(n)$ be independent rv's. Then the distribution of

$$t = \frac{\eta}{\sqrt{\xi/n}}$$

is called Student t-distribution with degrees of freedom (d.f.) n and denoted by t(n) (Student=V. Gosset).

Lukács' Theorem. Let $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ be i.i.d. rv's. Then

- 1. $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}});$
- 2. $nS_n^2/\sigma^2 \sim \chi^2(n-1)$, or equivalently, $(n-1)S_n^{*\,2}/\sigma^2 \sim \chi^2(n-1)$;
- 3. \bar{X} and S_n^2 are independent rv's, or equivalently, \bar{X} and ${S_n^*}^2$ are independent rv's.

Consequences:

• Recall that in case of $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma_0)$ i.i.d. sample, where σ_0 is known, for any $0 < \alpha < 1$, the $1 - \alpha$ level confidence interval for μ is

$$I_{1-\alpha} = \bar{X} \pm \frac{z_{\alpha/2}\sigma_0}{\sqrt{n}},\tag{1}$$

where $z_{\alpha/2}$ is the $1 - \alpha/2$ quantile value of the standard normal distribution.

• In case of $X_1, X_2, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$ i.i.d. sample, where σ is unknown, by Lukacs' Theorem,

$$t = \frac{\frac{X-\mu}{\sigma}\sqrt{n}}{\sqrt{\frac{(n-1)S_n^{*2}}{\sigma^2}}/(n-1)} = \frac{\bar{X}-\mu}{S_n^*}\sqrt{n} \sim t(n-1),$$

therefore, for any $0 < \alpha < 1$, the $1 - \alpha$ level confidence interval for μ is

$$I_{1-\alpha} = \bar{X} \pm \frac{t_{\alpha/2}(n-1)S_n^*}{\sqrt{n}},$$
(2)

where $t_{\alpha/2}(n-1)$ is the $1-\alpha/2$ quantile value of the t(n-1) distribution.

• Going further, in view of the expectation and variance of the $\chi^2(n-1)$ distribution,

$$\mathbb{E}\left((n-1)S_n^{*2}/\sigma^2\right) = n-1$$

 \mathbf{SO}

This is another proof that the corrected empirical variance is an unbiased estimator of the true (population) variance of the normal distribution. Also,

Var
$$\left((n-1)S_n^{*2}/\sigma^2 \right) = 2(n-1),$$

 \mathbf{SO}

$$\operatorname{Var}({S_n^*}^2) = \frac{2(n-1)}{(n-1)^2} \sigma^4 = \frac{2\sigma^4}{(n-1)} \to 0$$

as $n \to \infty$. Consequently, S_n^{*2} is an unbiased estimator with "small" variance in the normal case.

• Therefore, for "large" $n \ (n \ge 30)$, even in case of unknown variance the confidence interval of (1) can be updated to

$$I_{1-\alpha} = \bar{X} \pm \frac{z_{\alpha/2} S_n^*}{\sqrt{n}},$$

whereas (2) is mainly applicable for "small" (n < 30) sample sizes.

Steiner's theorem, covariance, correlation

- Steiner's Theorem: $\mathbb{E}(X-c)^2 = \mathbb{E}(X-\mathbb{E}X)^2 + (\mathbb{E}X-c)^2 \ge \operatorname{Var} X$, min. if $c = \mathbb{E}X$.
- *p*-quantile value or 100*p*-percentile of X is x_p if $F(x_p) = p$. Median: 0.5-quantile value.
- The covariance between X and Y (having finite second moments) is

$$\operatorname{Cov}(X,Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y) = \mathbb{E}(XY) - \mathbb{E}(X) \cdot \mathbb{E}(Y),$$

while their **correlation** is

$$\operatorname{Corr}(X, Y) = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}$$

By the Cauchy–Schwarz inequality: $|Corr(X, Y)| \le 1$, and it is ± 1 if and only if Y = aX + b.

- $\operatorname{Var}(aX + bY) = a^{2}\operatorname{Var}(X) + b^{2}\operatorname{Var}(Y) + 2ab\operatorname{Cov}(X, Y).$
- If X and Y are independent, then Cov(X,Y) = 0. The reverse is not usually true, but it is true in case of the following bivariate distribution.
- (X, Y) has 2-variate normal distribution with parameters μ and C if its density is

$$f(x,y) = \frac{1}{2\pi |\mathbf{C}|^{1/2}} e^{\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T \mathbf{C}^{-1}(\mathbf{x}-\boldsymbol{\mu})},$$

where the expectation vector $\boldsymbol{\mu}$ contains the expectations of X and Y in their components, and the 2 × 2 positive definite **covariance matrix** is

$$\boldsymbol{C} = \begin{pmatrix} \operatorname{Var}\left(\boldsymbol{X}\right) & \operatorname{Cov}\left(\boldsymbol{X},\boldsymbol{Y}\right) \\ \operatorname{Cov}\left(\boldsymbol{X},\boldsymbol{Y}\right) & \operatorname{Var}\left(\boldsymbol{Y}\right) \end{pmatrix}.$$