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Descriptive statistics

(S,A,P) is a statistical space if (S,A,P) is probability space for all P ∈ P,
where P is a family of distributions.
Parametric case: P = {Pθ | θ ∈ Θ}, where Θ ⊂ Rk is the parameter space.
Statistical sample: X1, X2, . . . , Xn i.i.d.
Sample space (X ): set of all possible realizations x = (x1, . . . , xn) of X =
(X1, . . . , Xn).
Statistic: T = T (X) = T (X1, . . . , Xn) measurable function of the sample ele-
ments.
Basic descriptive statistics:

• Sample mean: X̄ =
1

n

∑n
i=1Xi. (Sometimes X̄n, x̄, x̄n.)

• Steiner’s Theorem:
1

n

∑n
i=1(xi − c)2 =

1

n

∑n
i=1(xi − x̄)2 + (x̄− c)2.

• Empirical variance: S2 =
1

n

∑n
i=1(Xi − X̄)2 = 1

n

∑n
i=1X

2
i − X̄2 = X2 −

X̄2.

• Corrected empirical variance: S∗2 =
n

n− 1
S2 =

1

n− 1

∑n
i=1(Xi − X̄)2.

• Standard Error of Mean: X̄
√
n/S∗.

• k-th empirical moment: Mk =
1

n

∑n
i=1X

k
i . Centered version: M c

k =

1

n

∑n
i=1(Xi − X̄)k. (S2 =M c

2 =M2 −M2
1 .)

• Skewness: M c
3/(M

c
2 )

3/2. Kurtosis: M c
4/(M

c
2 )

2 − 3.

• Empirical covariance based on (X1, Y1)
T , . . . , (Xn, Yn)

T i.i.d.:

C =
1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) =
1

n

n∑
i=1

XiYi − X̄Ȳ .

• Empirical correlation coefficient: R = C
SXSY

=
∑n

i=1 XiYi−nX̄Ȳ√
(
∑n

i=1 X2
i −nX̄2)(

∑n
i=1 Y 2

i −nȲ 2)
.
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Estimation

We take an i.i.d. sample X1, . . . , Xn from a population with distribution Pθ,
where θ is unknown parameter, and it is in the parameter space Θ, so θ ∈ Θ. For
example, if X := (X1, . . . , Xn) follow Poisson distribution, then the parameter,
now denoted by λ is in the parameter space Θ = (0,∞). The sample space is
the set of all possible n-tuples (x1, . . . , xn) that are possible realizations of the
sample. For fixed simple size n, let X ⊂ Rn denote the sample space, that is
the set of all possible realizations. In the Poisson case, it is X = {0, 1, 2, . . . }n.

Point estimation means that we want to conclude for θ based on a sample.
For this, we need a convenient statistic.

Definition 1 The likelihood function for x = (x1, . . . , xn) ∈ X and θ ∈ Θ
is Lθ(x) = Pθ(X = x) =

∏n
i=1 Pθ(Xi = xi) =

∏n
i=1 pθ(xi) in the discrete,

and Lθ(x) =
∏n

i=1 fθ(xi) in the absolutely continuous case, where pθ(x) is the
probability mass function (p.m.f.) in the discrete, and fθ(x) is the probability
density function (p.d.f.) in the continuous case.

Now we organize the sample entries into a statistic T := T (X1, . . . , Xn) =
T (X).

We want to estimate θ, or its measurable function ψ(θ) by means of the
statistic T (X) on the basis of the i.i.d. sample X = (X1, . . . , Xn). The point

estimator is sometimes denoted by θ̂ or ψ̂. Some criteria for the ‘goodness’ of a
point estimator:

• T (X) is an unbiased estimator of ψ(θ), if Eθ(T (X)) = ψ(θ), ∀θ ∈ Θ.

• T (Xn) is an asymptotically unbiased estimator of ψ(θ), if

lim
n→∞

Eθ(T (Xn)) = ψ(θ), ∀θ ∈ Θ.

Examples of ‘good’ estimators:

• the sample mean X̄ is always an unbiased estimator of the population
mean E(X1);

• the empirical variance is asymptotically unbiased, whereas, the corrected
empirical variance is unbiased estimator of the population variance σ2 =
Var (X1); (this is a BONUS exercise).

Methods of point estimation:

• Maximum Likelihood Estimation (MLE): given the sample, the MLE

of θ is θ̂ if it maximizes the likelihood function. By common sense, in
case of a discrete distribution, the MLE is a possible parameter value, for
which having the actual sample is the most likely. However, θ̂ = T (X)
is a statistic, and it is asymptotically unbiased and strongly consistent
estimator of θ.
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Examples

1. Let X1, . . . , Xn be i.i.d. sample from Poisson distribution with parameter
λ.

Lλ(x) =

n∏
i=1

λxi

xi!
e−λ =

(
λ
∑n

i=1 xie−nλ
)
·

(
n∏

i=1

1

xi!

)
= gλ(

n∑
i=1

xi) · h(x),

so
∑n

i=1Xi is sufficient statistic for λ, akin to its one-to-one function X̄.

To find the MLE,

lnLλ(x) = ln

[
n∏

i=1

λxi

xi!
e−λ

]
= lnλ

n∑
i=1

xi −
n∑

i=1

lnxi!− λn.

Differentiating with respect to λ, the likelihood equation is

∂ lnLλ(x)

∂λ
=

1

λ

n∑
i=1

xi − n = 0.

The solution is λ̂ = x̄, which indeed gives a local and global maximum.
So T (X) = X̄ is the MLE of λ, provided it is not 0, i.e., not all the
sample entries are zero at the same time (it can happen with positive,
albeit ‘small’ probability).

2. Let X1, . . . , Xn be i.i.d. sample from exponential distribution with pa-
rameter λ). Then

Lλ(x) =

n∏
i=1

λe−λxi = λne−λ
∑n

i=1 xi ,

that is gλ(T (x)), and h(x) = 1 · I(0,∞). Therefore,
∑n

i=1Xi is sufficient

akin to X̄ or 1
X̄
.

As for the MLE of λ,

lnLλ(x) = ln

[
n∏

i=1

λe−λxi

]
= n lnλ− λ

n∑
i=1

xi,

from which, after differentiating, we get that λ̂ = 1/x̄, that gives a local
and global maximum. Consequently, T (X) = 1/X̄ is the MLE of λ with
probability 1 (X̄ can be 0 only with probability 0).

3. Let X1, . . . , Xn be i.i.d. sample from normal (Gaussian) distribution with
unknown parameter θ = (µ, σ2). Then

Lθ(x) =
1

(
√
2πσ)n

exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)
=

=
1

(
√
2πσ)n

exp

(
− 1

2σ2

[
n∑

i=1

(xi − x̄)2 + n(x̄− µ)2

])
.
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It is gθ(T (x)), where T (X) = (X̄, S2) sufficient for θ, and h(x) = 1.
Obviously, (X̄, S∗2) or (

∑n
i=1Xi,

∑n
i=1X

2
i ) are also sufficient.

To find MLE,

lnLθ(x) = ln

n∏
i=1

1√
2πσ

e−
(xi−µ)2

2σ2 =

n∑
i=1

[
− ln(

√
2πσ2)− (xi − µ)2

2σ2

]
=

= −n
2
(ln(2π) + lnσ2)− 1

2σ2

n∑
i=1

(xi − µ)2.

Taking partial derivatives,

∂ lnLθ(x)

∂µ
= − 1

2σ2

n∑
i=1

2(xi − µ)(−1) = 0 =⇒ µ̂ = x̄.

and
∂ lnLθ(x)

∂σ2
= −n

2

1

σ2
+

1

2(σ2)2

n∑
i=1

(xi − µ)2 = 0.

Since the solution µ̂ = x̄ does not depend on the actual value of σ2 sub-
stituting it to the second equation, we get that σ̂2 = S2

n, that is only
asymptotically unbiased for σ2. The Hessian at (x̄, s2n) is:

H =

− n
s2n

0

0 − n
2(s2n)

2

 ,

which is negative definite, so we indeed have a local and global maximum
here.

4. Let X1, . . . , Xn be i.i. sample from continuous uniform distribution on
[a, b]. Here θ = (a, b).

Lθ(x) =

n∏
i=1

fθ(xi) =
1

(b− a)n
, if x1, . . . , xn ∈ [a, b],

and 0, otherwise. Lθ(x) = (b − a)−nI(x∗1 ≥ a, x∗n ≤ b) = gθ(x
∗
1, x

∗
n) and

h(x) = 1. So the pair (X∗
1 , X

∗
n) is sufficient for (a, b). It also gives the

MLE, as we maximize the likelihood on the constraint that [a, b] should
contain all the sample entries.

Here the moment estimate of the parameters is not the same as the MLE,
in contrast to the first three examples.
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Interval estimation: The random interval (T1(X), T2(X)) is a confidence in-
terval of level at least 1− ε for ψ(θ), if Pθ(T1 < ψ(θ) < T2) ≥ 1− ε (∀θ ∈ Θ).

Note that in case of a continuous distribution, exactly 1− ε level confidence
interval can be attained. ε is usually ‘small’, e.g., 0.05 or 0.01, in which cases
we speak about 95% or 99% confidence intervals.
Definition: Let ξ1, . . . , ξn ∼ N (0, 1) be i.i.d. rv’s. Then the distribution of the
rv ξ =

∑n
i=1 ξ

2
i is called χ2 (chi2) distribution with degrees of freedom (d.f.) n.

Definition: Let η ∼ N (0, 1) and ξ ∼ χ2(n) be independent rv’s. Then the
distribution of

t =
η√
ξ/n

is called Student t-distribution with degrees of freedom (d.f.) n and denoted by
t(n) (Student=V. Gosset).

Lukács’ Theorem. Let X1, X2, . . . , Xn ∼ N (µ, σ) be i.i.d. rv’s. Then

1. X̄ ∼ N (µ,
σ√
n
);

2. nS2
n/σ

2 ∼ χ2(n− 1), or equivalently, (n− 1)S∗
n
2/σ2 ∼ χ2(n− 1);

3. X̄ and S2
n are independent rv’s, or equivalently, X̄ and S∗

n
2 are indepen-

dent rv’s.

Consequences:

• Recall that in case of X1, X2, . . . , Xn ∼ N (µ, σ0) i.i.d. sample, where σ0
is known, for any 0 < α < 1, the 1− α level confidence interval for µ is

I1−α = X̄ ±
zα/2σ0√

n
, (1)

where zα/2 is the 1− α/2 quantile value of the standard normal distribu-
tion.

• In case of X1, X2, . . . , Xn ∼ N (µ, σ) i.i.d. sample, where σ is unknown,
by Lukacs’ Theorem,

t =
X̄−µ
σ

√
n√

(n−1)S∗
n
2

σ2 /(n− 1)
=
X̄ − µ

S∗
n

√
n ∼ t(n− 1),

therefore, for any 0 < α < 1, the 1− α level confidence interval for µ is

I1−α = X̄ ±
tα/2(n− 1)S∗

n√
n

, (2)

where tα/2(n−1) is the 1−α/2 quantile value of the t(n−1) distribution.

• Going further, in view of the expectation and variance of the χ2(n − 1)
distribution,

E
(
(n− 1)S∗

n
2/σ2

)
= n− 1,

so
E
(
S∗
n
2
)
= σ2.
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This is another proof that the corrected empirical variance is an unbiased
estimator of the true (population) variance of the normal distribution.
Also,

Var
(
(n− 1)S∗

n
2/σ2

)
= 2(n− 1),

so

Var (S∗
n
2) =

2(n− 1)

(n− 1)2
σ4 =

2σ4

(n− 1)
→ 0

as n → ∞. Consequently, S∗
n
2 is an unbiased estimator with “small”

variance in the normal case.

• Therefore, for “large” n (n ≥ 30), even in case of unknown variance the
confidence interval of (1) can be updated to

I1−α = X̄ ±
zα/2S

∗
n√

n
,

whereas (2) is mainly applicable for “small” (n < 30) sample sizes.

Steiner’s theorem, covariance, correlation

• Steiner’s Theorem: E(X − c)2 = E(X − EX)2 + (EX − c)2 ≥ VarX,
min. if c = EX.

• p-quantile value or 100p-percentile of X is xp if F (xp) = p. Median:
0.5-quantile value.

• The covariance between X and Y (having finite second moments) is

Cov (X,Y ) = E(X − EX)(Y − EY ) = E(XY )− E(X) · E(Y ),

while their correlation is

Corr (X,Y ) =
Cov (X,Y )√

Var (X) ·Var (Y )
.

By the Cauchy–Schwarz inequality: |Corr (X,Y )| ≤ 1, and it is ±1 if and
only if Y = aX + b.

• Var (aX + bY ) = a2Var (X) + b2Var (Y ) + 2abCov (X,Y ).

• If X and Y are independent, then Cov (X,Y ) = 0. The reverse is not
usually true, but it is true in case of the following bivariate distribution.

• (X,Y ) has 2-variate normal distribution with parameters µ and C if
its density is

f(x, y) =
1

2π|C|1/2
e

1
2 (x−µ)TC−1(x−µ),

where the expectation vector µ contains the expectations of X and Y in
their components, and the 2× 2 positive definite covariance matrix is

C =

(
Var (X) Cov (X,Y )

Cov (X,Y ) Var (Y )

)
.
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