
PROBABILITY A4, Lesson 8-9.
Joint Distributions

• The Joint Distribution of X1, . . . , Xn is given by the collection of probabilities P(X ∈ B)
(B ∈ Bn), where X = (X1, . . . , Xn) is random vector and Bn denotes the set of Borel-sets of
Rn. The rv’s X1, . . . , Xn are independent, if

P(X1 ∈ B1, . . . , Xn ∈ Bn) =
n∏

i=1

P(Xi ∈ Bi), ∀B1, . . . , Bn ∈ B.

• Special types of random vectors (X, Y ) (the n = 2 case):

1. Discrete joint distributions: X takes on values x1, x2, . . . and Y takes on values
y1, y2, . . . . The distribution of (X, Y ) is given by the joint p.m.f.

pij = P(X = xi, Y = yj), i = 1, 2, . . . ; j = 1, 2, . . . ,

where
∑

i

∑
j pij = 1.

The marginal distribution of X is pi. =
∑

j pij, i = 1, 2, . . . .

The marginal distribution of Y is p.j =
∑

i pij, j = 1, 2, . . .

X and Y are independent if and only if pij = pi.p.j, ∀i, j.
The mode of (X, Y ): the value(s) taken with the largest probability.

2. Absolutely continuous joint distributions: The range of (X, Y ) is not countable
and for any (x, y) ∈ R2: P((X, Y ) = (x, y)) = 0. Still, there is an f : R2 → R
nonnegative, integrable function such that∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy = 1 and

∫∫
B

f(x, y) dx dy = P((X, Y ) ∈ B), ∀B ∈ B2.

f is called joint p.d.f. of (X, Y ).

The marginal distribution of X is given by the p.d.f. f1(x) =
∫∞
−∞ f(x, y) dy.

The marginal distribution of Y is given by the p.d.f. f2(y) =
∫∞
−∞ f(x, y) dx.

X and Y are independent if and only if f(x, y) = f1(x)f2(y), ∀(x, y) ∈ R2.

• Conditional distributions, conditional expectation

1. The conditional distribution of Y given X = xi is:

P(Y = yj|X = xi) =
pij
pi.

, j = 1, 2, . . .

and the conditional expectation of Y given X = xi is:

E(Y |X = xi) =
∑
j

yj
pij
pi.

=
1

pi.

∑
j

yjpij, i = 1, 2, . . .

Theorem of complete expectation:

E(Y ) =
∑
i

P(X = xi) · E(Y |X = xi),

therefore E(Y ) = E(E(Y |X)).



2. The conditional distribution of Y given X = x is given by the p.d.f.

f2|1(y|x) =
f(x, y)

f1(x)
, y ∈ R

and the conditional expectation of Y given X = x is:

E(Y |X = x) =

∫ ∞

−∞
yf2|1(y|x) dy =

1

f1(x)

∫ ∞

−∞
yf(x, y) dy = g(x), x ∈ R,

where g is the regression function. Hence, E(Y |X) = g(X).

Optimum property of the conditional expectation: E(Y − t(X))2 ≥ E(Y − E(Y |X))2

for any measurable t : R → R (least square approximation).

Theorem of complete expectation:

E(Y ) =

∫ ∞

−∞
f1(x) · E(Y |X = x) dx,

therefore E(Y ) = E(E(Y |X)).

The Distribution of Transformed Random Variables

1. Let t : X → Y be invertible R → R transformation. If the p.d.f. of X is f(x), then the p.d.f.
of Y is the following g(y):

g(y) = f(t−1(y)) · | d
dy

t−1(y)|, y = t(x) for some x ∈ supp(f).

2. Let X be a continuous rv with c.d.f. F . Then F (X) ∼ U(0, 1).

3. Let t : (X, Y ) → Z be R2 → R (usually not one-to-one) transformation. If the joint p.d.f. of
(X, Y ) is f(x, y), then the c.d.f. of Z is the following H(z):

H(z) =

∫∫
{(x,y)|t(x,y)<z}

f(x, y) dxdy, z = t(x, y) for some (usually many) (x, y) ∈ supp(f).

4. Convolution. Let X and Y be independent r.v.’s with p.d.f. f1(x) and f2(y), respectively.
Then the p.d.f. of Z = X + Y is:

h(z) =

∫ ∞

−∞
f1(x) · f2(z − x) dx =

∫ ∞

−∞
f2(y) · f1(z − y) dy.


